Damage Spreading and Information Distance in Cellular Automata

  • K. García-Medina Facultad de Física, Universidad de la Habana, 10400 La Habana, Cuba.
  • D. Estevez-Moya Facultad de Física, Universidad de la Habana, 10400 La Habana, Cuba.
  • E. Estévez-Rams Faculty of Physics-IMRE, Havana University, 10400 Havana, Cuba.

Abstract

Using the concept of information distance derived from Kolmogorov randomness, we study damage spreading for elementary cellular automata acting on a one-dimensional lattice. In contrast to previous definitions of the Lyapunov exponent based on Hamming distance, the new magnitude allows a better clustering of chaotic rules. The
combined use of the Lyapunov exponent, Hamming, and information distance-based, results in a more robust characterization of cellular automata behavior. An exten-sion of the type analysis shown can be directly made to other one-dimensional time and space discrete dynamical systems.

Published
Dec 14, 2022
How to Cite
GARCÍA-MEDINA, K.; ESTEVEZ-MOYA, D.; ESTÉVEZ-RAMS, E.. Damage Spreading and Information Distance in Cellular Automata. Revista Cubana de Física, [S.l.], v. 39, n. 2, p. 90-97, dec. 2022. ISSN 2224-7939. Available at: <https://revistacubanadefisica.org/index.php/rcf/article/view/2022v39p090>. Date accessed: 08 feb. 2023.
Section
Original Articles

Most read articles by the same author(s)