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Using the concept of information distance derived from Kolmogorov
randomness, we study damage spreading for elementary cellular
automata acting on a one-dimensional lattice. In contrast to previous
definitions of the Lyapunov exponent based on Hamming distance,
the new magnitude allows a better clustering of chaotic rules. The
combined use of the Lyapunov exponent, Hamming, and information
distance-based, results in a more robust characterization of cellular
automata behavior. An extension of the type analysis shown can
be directly made to other one-dimensional time and space discrete
dynamical systems.

La propagación de daños en autómatas celulares es estudiada
utilizando distancia informacional, una magnitid derivada del uso de
la complejidad algorı́tmica. Los autómatas celulares estudiados son
los llamados elementales actuando sobre un arreglo unidimensional
de sitios. Se define un exponente de Lyapunov derivado de
la distancia algorı́tmica y se compara con definiciones más
tradicionales del mismo. Una caracetrización más robusta de los
autómatas es lograda a partir del uso combinado de exponentes
de Lyapunov, distancia de Hamming y distancia informacional.
El método expuesto, queda claro, es extensible a otros sitemas
dinámicos que sean discretos en el espacio y en el tiempo.

PACS: Information theory (teorı́a de la información), 89.70.-a; Entropy in information theory (entropı́a en teorı́a de la información), 89.70.Cf;
Dynamical systems (sistemas dinámicos), 05.45.-a.

I. INTRODUCTION

Lyapunov exponents usually characterize sensitivity to
initial conditions in dynamical systems, but in a discrete
space system, it is not directly applicable [1]. By taking
two (infinitesimal) close initial conditions, the maximum
Lyapunov exponent can be loosely defined as the rate
of exponential divergence of the distance between two
trajectories in the limit of infinite time [2]. In a discrete
space system, there is no infinitesimal close initial condition.
Nevertheless, how two initially close configurations diverge
when submitted to the same evolution dynamics is still an
important measure, and ways to define and extend Lyapunov
exponent analysis to discrete systems have been proposed
[1, 3, 4].

In a discrete spatial system, initial conditions are said to
be closed when the distance between two configurations is
that given by the smaller possible change between them,
complying with the discrete spatial nature. The need to
define a distance measure is therefore needed. The simplest
one, usually taken, is the Hamming distance between the
configurations, or the number of cells where the two
configurations differ. In such a case, the minimum distance
is effectively one or the equivalent normalized value. As both
systems evolve, damage spreading is quantified by the same
Hamming measure [1]. Several behaviors can be observed:

1. The initial perturbation may disappear, and the two
configurations, after some finite number of steps, are
the same and, therefore, evolve in the same manner. In

the limit, the Hamming distance is zero.

2. The initial perturbation, beyond a certain finite number
of time steps, does not grow anymore, although it can
have a trajectory of its own: the Hamming distance is
constant after a finite number of time steps.

3. The initial perturbation grows, and so does the
divergence between the initial configurations: The
Hamming distance is monotonically increasing with
time.

If the interaction range in the system is finite, then, due to
the discrete spatial nature, damage spreading can only occur
linearly in the time limit.

The hamming distance can be deceiving. Consider, for
example, a configuration given by alternating ones and zeroes,
such that si = i mod 2, another configuration shifted only
by one site (or an odd number of sites), resulting in si =
(i + 1) mod 2, will have a maximum Hamming distance while,
it is clear, that they are conveying the same information.

Instead of using Hamming distance, other authors have
used Kolmogorov complexity as the tool of choice [5].
Kolmogorov complexity of a system is given by the length
of the shortest algorithm, able to describe the system
running on a Universal Turing Machine [6, 7]. Using a
Universal Turing Machine in the definitions makes the
defined measure absolute up to a constant value. Kolmogorov
complexity measures the randomness instead of complexity
as it is currently understood (in what follows, we will
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use the term Kolmogorov randomness). Distance metrics
using Kolmogorov randomness have been defined [8].
Emmert-Streib has used one of such definitions to derive a
hierarchical clustering of elementary cellular automata (ECA)
[9], which are dynamical systems with nearest neighborhood
range interaction acting over a boolean one-dimensional
lattice [10]. This approach considers small configurations of
cellular automata (CA) with 50 cells and 103 time steps. The
system spatiotemporal evolution is analyzed as a unique
string, by concatenating sequences derived from the temporal
evolution [9].

Unlike a Hamming distance, information distances measure
the closeness of two configurations by the computational effort
of going from one to the other: it is an information distance
[11]. The Kolmogorov-based distance will be small for the shift
example described above with maximum Hamming distance.

In dynamical systems, such as cellular automata, damage
spreading does not need to be a production and random
walk process but, instead, can involve, besides the production
of new symbols, the structuring of the perturbation as
times evolve. This structuring behavior will not be captured
by the Hamming-based distance and may affect the
information-based distance. For two states, discrete time and
space systems, Bagnoli et al. [3] extended the definition of
Lyapunov exponents λ by using boolean derivatives, first
introduced by Vichniac [12]. They applied the definition to
ECA systems. They introduced a parameter µ that proved
relevant as a control parameter, related to the fraction p of
sites equal to one on the three principal diagonals of the
Jacobian matrix [3]. The Hamming distance between two
configurations, starting from a single site perturbation, is
given by the Boolean Jacobian matrix of the global evolution
function F [13]. The Jacobian of F is a tridiagonal matrix of
ones and zeros. For a given critical value p = pc, three groups
can be identified according to the values of (µ, λ) : a first group
with (µ, λ) = (0,−∞); a second group µ > pc and λ > 0
and; a third group with µ ≈ pc anad λ > 0. Furthermore,
for ECA with 0 < µ < pc a random perturbation or small
noise in the time evolution produces a collapse of the defined
Lyapunov exponent to 0 or −∞. In such a way, they could
characterize ECA rules through Hamming distance, yet their
approach carries the limitations of using Hamming distance
as the system metric.

In this article, we will use an information distance based on
Kolmogorov randomness to define a Lyapunov exponent.
The information distance will be estimated by Lempel-Ziv
factorization [14]. Using the µ parameter defined by Bagnoli
et al. [3], ECA will be characterized. It will be shown that
information distance allows a better partition of ECA rules
and captures features of damage spreading that could not be
followed by previous measures.

II. CELLULAR AUTOMATA

One dimensional cellular automata (CA) are defined over a
lattice of length N (N can be infinite) with sites at time t, labeled
as st

i , i = 0, 1, . . . ,N. st
i can take values, for a boolean CA, from

an alphabet Σ = {0, 1} of cardinality two. The whole lattice

configuration at time t will be denoted by st. A local updating
rule f , of range r, is defined such that at time t + 1, the value
of the site si is given by

st+1
i = f [st

i−r, . . . , s
t
i , . . . , s

t
i+r] = f [r

i s
t] ∈ {0, 1} (1)

where r
i s

t stands for the subsequence st
i−r, . . . , s

t
i , . . . , s

t
i+r.

In what follows circular boundary conditions are enforced:
si = s(i mód N) where (i mód N) means that i is reduced
module N.

An overlapping partition of the global configuration st in
blocks r

i s
t of length 2r + 1 allows applying the local rule f

to every block, updating the whole configuration to st+1 and
therefore, inducing a global map F. If no ambiguity arises, the
r superscript in r

i s
t will be dropped: ist.

When r = 1, the cellular automata are called elementary
(ECA), and to each ECA rule f , Wolfram proposed a notation
number R that can be computed as [10]:

R = f (0, 0, 0)20 + f (0, 0, 1)21 + . . . + f (1, 1, 1)27. (2)

ECA rules can be partitioned into 88 equivalence classes as
a result of mirror and reversion symmetries [10], and the
analysis can then be reduced to a representative member of
each type.

Wolfram devised a classification scheme for cellular automata
that is still the most used one [1]. Starting from an arbitrary
random initial configuration, CA is classified as:

W1 : System evolves to a homogeneous state;

W2 : System evolves to a (time) periodic behavior;

W3 : System evolves to aperiodic chaotic patterns;

W4 : System evolves to configurations with complex
patterns and long-lived, correlated, and localized
structures.

Reference to Wolfram classification of rules will be made,
which are taken from Wolfram Alpha knowledge engine [15].
It has been proven that Wolfram classification is problematic
for CA in classes W3 and W4, as, for a given rule, determining
its class turns to be undecidable [16]. Additionally, some rules
show high sensitivity to initial conditions, and different initial
configurations can lead to different behaviors [10], making
their classification even more ambiguous.

III. BOOLEAN DERIVATIVES OF CA, PERTURBATIONS
AND LYAPUNOV EXPONENT

Consider a n-variable boolean function f , the partial
derivative with respect to the kth variable xk, is another
n-variable boolean function defined as [12, 13]

Dk f (x) ≡
∂ f (x)
∂xk

= f (x) ⊕ f (x ⊕ ek) (3)

x = (xi, . . . , xi+n) is the n-variable argument of the function,
defined in a n-dimensional vector space over the Galois field
F = {0, 1}, and {e1, e2, . . . , en} are the standard basis vectors,

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).
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⊕ is the addition module 2 operation or boolean XOR

ς1 ⊕ ς2 =

{
1 ς1 , ς2
0 ς1 = ς2

The addition ⊕ between two vectors is defined as the XOR
operation between its components,

x ⊕ y = (x1 ⊕ y1, x2 ⊕ y2, . . . , xn ⊕ yn).

The boolean derivative (3) will be zero if, given the vector x,
the value of the function f does not depend on the value of xk;
it will be one otherwise.

The boolean function will correspond to our local rule for the
ECA. In such case we can define the Jacobian matrix Jt(F) at
time t of the global Boolean function F, with entries

Jt
ik =

∂ f [ist]
∂sk

(4)

If |i − k| > 1, then Jik = 0, which renders the Jacobian matrix
for ECA rules as a tridiagonal matrix with entries of 1s or 0s.
This last fact allows us to deal effectively with the matrix even
if we consider the CA lattice infinite. If the lattice has N sites,
the Jacobian matrix will be N ×N.

Consider an initial configuration s0 and the initial perturbed
configuration q0 = s0

⊕ δ0, where δ0 is a perturbation vector
(which is usually taken to be one of the ei, a minimum
perturbation). The perturbed vector at time t will be δt+1 =
st+1
⊕ qt+1, which can be shown [13] to be given, in a linear

approximation, by

δt+1
≈

⊕
i=1,...,N

δt
i ∧DiF(st) (5)

∧ is the boolean AND operator

ς1 ∧ ς2 =

{
1 ς1 = ς2 = 1
0 otherwise

For the ECA, equation (5) reduces to

δt+1
i ≈ δt

i−1 ∧
∂F
∂xi−1

⊕ δt
i ∧

∂F
∂xi
⊕ δt

i+1 ∧
∂F
∂xi+1

(6)

Bagnoli et al. [3] derived a Lyapunov exponent from equation
(5) (or eq.6) by the following procedure. Define Γ0 = δ0, then

Γt+1 = Jt
· Γt (7)

The maximum Lyapunov exponent is defined as

λΓ(T) =
1
T

T∑
t=1

logϑt (8)

where the perturbation propagation rate is defined by

ϑt =
|Γt+1
|

|Γt|
(9)

where |Γ| =
∑

Γi. In the infinite limit λΓ ≡ λΓ(∞).

For ECA, consider µ(t) as the fraction of sites that are different
from zero on the three principal diagonals of J(F)

µ(t) =
1

3N

N∑
i=1

(
Ji,i−1 + Ji,i + Ji,i+1

)
(10)

which allows to define a parameterµ(T) as the geometric mean
for large enough time T

µ(T) =

 T∏
t=1

µ(t)


1/T

. (11)

µ(T) has been used to characterize the Jacobian matrix and
therefore the corresponding ECA rule [3].

To understand the meaning of Γ, consider the limit of
small initial perturbation, which corresponds to a single
site difference in the initial configurations; when, during
evolution, n defects appear, replicas for each produced
perturbed site are considered. By doing so, perturbed sites
are taken as individual non-interacting objects, and the
annihilation of defects is impossible. Γt

i is the number of
replicas carrying the defect et

i at time t [3].

It must be noticed that the Lyapunov exponent, as defined
by equation (8), characterizes the damage production but not
its structuring. They are insensible to whether perturbations
are generated in a specific pattern or if they are generated
and undergo some unpredictable random walk. To capture
the possible structuring of perturbation production, we must
resort to a different measure, and for that, Kolmogorov
algorithmic randomness will be used.

IV. KOLMOGOROV BASED NORMALIZED INFORMATION
DISTANCE, PERTURBATIONS AND LYAPUNOV
EXPONENT

Given the shortest program s∗ that, when running in a
Universal Turing Machine (UTM), reproduces the string s,
the Kolmogorov complexity or Kolmogorov randomness K(s)
of the string is the length of s∗ [7],

K(s) = |s∗|. (12)

Kolmogorov randomness measures how easier it is to convey
the information in s using a shorter description s∗. At most,
the Kolmogorov randomness will be equal to the string
length when the string has no redundancy, which happens
for a completely random sequence. The UTM condition is
needed to make the definition sound. While Kolmogorov
randomness is maximum for a random string, it will attain
its smallest value for a constant sequence of only one symbol.
The conditional Kolmogorov randomness K(s|p) is the length
of the shortest program that can compute s from the string p.
If p conveys much information regarding s, then K(s|p) will be
small. The joint Kolmogorov randomness K(s, p) is the size of
the smallest program that computes both strings s and p. From
a theoretical point of view, the most common type of program
allowed for defining Kolmogorov randomness is prefix-free,
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where no program is a proper prefix of another program [7].
It holds that

K(s, p) � K(s) + K(p|s∗) = K(p) + K(s|p∗) (13)

where � denotes that equality is valid up to a constant value
independent of p and s.

Kolmogorov randomness is uncomputable, a fact related to
the halting problem [7], but the entropy density defined by

h(s) = lı́m
|s|→∞

K(s)
|s|

(14)

can be estimated in several ways. The entropy density defined
in (14) is equivalent to the entropy density defined within
Shannon information theory, which opens the possibility to
use estimates of Shannon entropy rates as estimates of h(s).

It is straightforward to see that the information about s
contained in p can be defined by

I(s : p) = K(s) − K(s|p∗). (15)

Which, as a result of equation (13), is symmetrical, up to a
constant, on its arguments: I(s : p) � I(p : s).

Now we are in a condition to define the information distance
between two sequences s and p as [8]:

dID(s, p) =
max{K(s|p∗),K(p|s∗)}

max{K(s),K(p)}
= 1 −

I(s : p)
K(p)

(16)

dID complies, up to a constant value, with the triangle
inequality, the symmetry axiom, and the identity axiom.

dID(s, p) differs from a Hamming-type distance; it is not a direct
damage field measure but, instead, is an information distance
because it quantifies how correlated two sequences are from
the algorithmic or information perspective. Two sequences
that can be derived one from the other by a small-sized
algorithm will have a small dID. In comparison, two strings
that are not algorithmically correlated will have a dID near one.
From the definition, the reader can see that if two sequences
are highly random, but one is very similar site by site, they
will have a small Hamming distance and a small dID value.
However, two sequences, one being a shift of the other, can
have a large Hamming distance and yet will deliver a small dID
value, as the shifting program is simple and small compared
to the string lengths.

We can cast equation (16) in terms of entropy density by
dividing the numerator and the denominator by the string
length and considering that |s| = |p|

dh(s, p) =
max{h(s|p∗), h(p|s∗)}

max{h(s), h(p)}
(17)

which, using (13), can be written as

dh(s, p) =
h(s|p) −min{h(s), h(p)}

max{h(s), h(p)}
(18)

The halting problem makes it impossible to compute
Kolmogorov randomness, which is the main drawback

in its practical use; instead, alternatives based on the
compressibility of the mathematical description of the system
are usually introduced [11]. The Lempel-Ziv factorization will
be used to estimate the entropy density, as the supplementary
material explains.

Consider an initial configuration st and the perturbed
configuration qt = st

⊕ δt; for any time step, the information
distance between both sequences can be computed dh(st, qt) ≡
dt

h. A similar expression to (9) can be defined,

ζt =
dt+1

h

dt
h

(19)

From there, a corresponding Lyapunov exponent follows

λh(T) =
1
T

T∑
t=1

log ζt (20)

Again, λh(∞) ≡ λh.

V. SIMULATION CONDITIONS

1. For the calculation of λΓ, a lattice of 512 cell was used,
5000 time steps were taken.

2. For the calculation of λh a lattice of 104 cell was used,
104 time steps were taken.

The difference in the system sizes is justified in terms of
computation efficiency. Lempel-Ziv estimations need longer
sequences to guarantee a better estimation as the convergence
of the estimates is slow [11].

Ten different random initial conditions were used in both
cases, taken from http://www.random.org. Perturbation on
the initial conditions was done by changing a single site at
the centre of the initial lattice configuration.

VI. DAMAGE SPREADING CHARACTERIZATION BY
LYAPUNOV EXPONENTS

Bagnoli et al. [3] definition of the Lyapunov parameter λΓ is
not exactly a sum over the Hamming distance spreading. By
making replicas of each error as it appears, the annihilation of
defects is not taken into account; this results in the Hamming
field may saturate while the Lyapunov factor continues to
grow.

By definition, if λΓ < 0, the damage field is contractive, and
after several steps, both the perturbed and the non-perturbed
systems will behave identically. As defect interaction is not
taken into account, the contractive nature of the damage
field can only be a result of the interaction of the defect
with the underlying configuration, identical in both perturbed
and non-perturbed systems. Error annihilation overcomes
error production. If λΓ > 0, error production increases with
time, overcoming error annihilation by interaction with the
underlying configuration. ForλΓ = 0, after a sufficient number
of steps, error production and annihilation equal.
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Simulation results lead to the characterization of rules’
behavior concerning their maximum Lyapunov exponent λΓ

in five types:

Rules have strong (single) Lyapunov value λΓ = −∞;
that is, the value of the exponent is independent of the
initial random condition.

Rules have strong (single) Lyapunov value λΓ = 0 also
independent of the initial random condition.

Rules can have two Lyapunov values λ = −∞ or λΓ = 0
depending on the initial random condition.

Rules have strong (single) Lyapunov value λΓ > 0
independent of the initial random condition.

Depending on the initial random condition, rules have
a mixture of two or more behaviors, one resulting in a
Lyapunov value of λΓ > 0.

Maximum Lyapunov exponents for all rules are listed in Table
1, while rules with strong behaviors are listed in Table 2.

Figure 1. Non-negative maximum Lyapunov exponent (eq. (8)) as a function
of the µ parameter for the all minimum equivalent ECA. Results were obtained
from simulations carried over each cellular automaton with a 512-cell
random initial condition evolving during 2500 time steps using a single site
perturbation at the initial time. The average value over 10 realizations is
shown. Triangles correspond to rules with also negative or zero Lyapunov
exponents.

Fig. 1 shows the maximum Lyapunov exponent λΓ for each
non-equivalent ECA for which λΓ ≥ 0, as a function of the
µ parameter. Up to µ < 0.42, all rules belong to Wolfram
class W1 and W2 and have at least one λΓ negative or zero
value. A number of these rules can also show a positive
maximum Lyapunov exponent, depending on the initial
condition. Strong λΓ = −∞ rules all have a µ = 0 value, and
they belong to W1 type in the Wolfram classification scheme.
All rules with strong λΓ = 0 values, have µ < 0.44 except rule
56 with µ = 1/2. According to Bagnoli et al. [3], a second-order
phase transition occurs in the random matrix approximation
at µc = 0.441. The same study found that for rules with µ < µc,
the maximum Lyapunov exponent collapses to a negative or
zero value if noise is added to their evolution. Our simulations
show that for all rules with a µ value below the critical value
µc, the probability of a positive maximum Lyapunov exponent
is much lower than the probability of a non-positive exponent.

All rules with strong positive maximum Lyapunov exponent
have µ values larger than µc.

Rules with constant Jacobian matrix have λΓ = log(3µ).

λΓ > 0 rules can be in any of the Wolfram classifications, except
W1, which is not surprising for W3 and W4 rules but can come
as a surprise for W2 type rules. W2 rules for long enough
times to settle into fixed configurations or periodic behavior.
In either case, this fact and the discrete nature of time imply
that the perturbation field cannot grow indefinitely. Suppose
the orbit of the unperturbed and perturbed initial condition
will end in a periodic cycle of periods T0 and Tp, respectively.
In that case, the corresponding damage field will also exhibit
a periodic cycle of period LCM(T0 × Tp)1. As a result, for all
W2 rules, an ever-expanding damage field should not happen,
and the perturbation value dt will eventually saturate.

Figure 2. W2 rules with strong λΓ > 0 condition. Rule 41 (a) after an initial
spreading of defects settles into a periodic behavior, yet (b) Γt increases
exponentially. Rule 57 (c) collapses its damage field to zero after a few time
steps, yet (d) Γt still shows an exponential increase.

Rules W2 that can show positive λΓ values show two trends;
in one case, for certain rules and initial conditions, the ECA
evolution ends in a periodic behavior with a period larger than
one. Rules 1, 3, 5−7, 9, 25−29, 33, 35, 37, 38, 41, 57, 62, 73, 74, 94,
108, 134, 154, 156 show such damage field cycles with periods
larger than one. Fig. 2a and b shows rule 41 as an example of
this class. Observe that in spite that Γt has exponential growth,
the defect field, for sufficiently long times, has a periodic
behavior. No periodic cycle can be identified in the second
case, even for long running times. In this case, despite the
exponential growth of the Γt values (Fig. 2d), the damage
field ends into a constant value (Fig. 2c). In both cases, defects
are massively produced by the ECA rule, as reflected by the
exponential growth of Γ, but also massive defect annihilation
occurs as a consequence of defect interaction, mediated by the
whole of the cell configuration. In both cases, λΓ > 0 does not
signal uncontrolled damage spreading in the context of the
particular ECA rule evolution.

In those W2 rules with strong positive λΓ values (rules 41, 57,
62, 73, 134), it is the rule which enforces both defect production
and annihilation, independent of the lattice configuration.
This dynamic results in either the freezing of the damage field
into a local periodic pattern or its complete disappearance
(see Fig. 3). For those rules where λΓ > 0 coexist with other
behaviors, the production of defects is mediated by the cell
environment.

1LCM(a, b) is the least common multiple of integer numbers a and b.
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It should be noticed that W3 rules 18, 22, 122, and 126
are usually perturbation expansive (λΓ > 0) but, for certain
initial conditions, can show a negative maximum Lyapunov
exponent. Finally, rules 105 and 150 exhibit the largestλΓ value
of log 3, corresponding to a constant Jacobian matrix with all
derivatives equal to 1. The damage field of these two rules
shows fractal behavior (see Fig. 3 for rule 150).

Figure 3. Information distance behaviour for two rules with strong λΓ > 0.
Perturbed sequence has as initial sequence the same as the unperturbed
sequence, with only the central site negated. Damage field were calculated
by plotting in black those sites were the unperturbed and perturbed values are
different, and are shown as inset to the figures, as a function of time. The Rule
62 (above) settles into a damage field (inset) with periodic spatial behavior.
This results in a small dt

h, of the order 10−2, value for all times, in spite that
the damage field initially spreads and finally saturates. Rule 150 (below) has
a fractal damage field (inset). The dt

h values are a order of magnitude larger
than in rule 42.

When λh is plotted against λΓ, as shown in Fig. 4, there is no
linear relation between both magnitudes; furthermore, there
is no strict monotonic relation between them. Certainly, rules
with the higher λΓ also correspond to the higher λh values,
which also conform mostly to W3 and W4 type rules. The
second interesting fact of Fig. 4 is that all W2 rules have smaller
λh values than the more complex rules of type W3 and W4.
Third, some rules with largeλΓ(> 0.6) haveλh values near zero
(rules 72, 104, 108, 200, 232). Even a strong λΓ > 0 rule, such
as 134, shows a near zero λh value. Rule 57 with λΓ > 0.6 has
a small λh value compared to the W3 and W4 rules. The only
W2 rule with λΓ > 0.6 that have a larger λh value compared
to the other rules of the same type is rules 73, which shows
an asymptotic temporal periodic pattern of period larger than
one and with a rich structured spatial organization, resulting
in large damage field spread before freezing. This rule is far
from producing a trivial spatiotemporal map.

The rules with the largest λh values are Wolfram numbers 60,
90, 105, and 150, with values well above other rules. The three

rules have fractal damage spreading field.

Figure 4. λh vs maximum Lyapunov exponent based on Hamming distance
λΓ (eq. 8). λh was estimated using Lempel-Ziv factorization over cellular
automaton lattice of 104 sites and averaged over ten different random initial
conditions using a single site perturbation at the initial time. λΓ was estimated
same as in figure 5. Only λΓ > 0 are shown.

Compare the behavior of the dt
h function for rules 62 and

150. The first, which has a strong λΓ > 0 behavior, has a
damage field that ends in periodic behavior (Fig. 3 above,
inset). The dt

h function reflects the long-term periodic behavior,
characterized by a tree value cycle (Fig. 3 above). In any case,
the dt

h does not exceed the value of 0.020. For the 150 rule,
as already explained, the damage field has a fractal character
(Fig. 3 below, inset) which is captured by the dt

h function (Fig. 3
below). The value of the dt

h is an order of magnitude larger than
the 62 rule. In both cases, Γt shows exponential growth, unable
to capture the differences in the spatiotemporal evolution of
both rules.

Figure 5. Lyapunov exponent based on information distance λh (eq. (20)) as a
function of the µ parameter. Lyapunov exponents were estimated as in figure
4. A clear clustering of W3 and W4 type rules can be seen.

Fig. 5 plots the λh as a function of µ. Compared to fig 1, the
use of λh allows a clear clustering of W3 and W4 rules from
the non-complex one.
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VII. CONCLUSION

In this work, we have shown that it is possible to introduce a
Lyapunov exponent based on information distance as defined
through Kolmogorov randomness. The measure capture
characteristics of ECA evolution, which are not captured
by previously defined maximum Lyapunov exponent based
on Hamming distance. As information distance is related
to the algorithmic burden of going from one sequence to
a second one, information distance is not a Hamming-type
distance but is sensible to perturbation structuring. In this last
sense, it complements the use of λΓ. While positive λΓ values
can falsely identify unlimited damage spreading, simulations
show that λh allows a better clustering of ECA rules in
correspondence to better characterizing chaotic behavior.

The Lyapunov exponent λh is not limited to cellular automata
analysis but can be readily extended to other discrete time and
space one-dimensional series.

VIII. APPENDIX: LEMPEL-ZIV FACTORIZATION AND
ESTIMATION OF ENTROPY DENSITY

Consider a string s, of finite length N, made out of characters
si taken from finite alphabet (e.g {0, 1}). Let s(i, j) = si . . . s j
be a substring of the string s; if j < i, then we take the
substring as empty. A factorization of s, is a non-overlapping
partition of the string s in substrings, such that, if we
consider ab as the concatenation of string a and b, then
we can write s = s(1, l1)s(l1 + 1, l2) . . . , s(lc−1, lc = N). The
Lempel-Ziv factorization [?] F(s) is constraint by the following
two conditions for each substring in the factorization:

1. s(lk−1 + 1, lk)π ⊂ s(1, lk)π2

2. s(lk−1 + 1, lk) 1 s(1, lk)π except, perhaps, for the last factor
s(lm−1 + 1,N).

Where the ”drop” operator π is defined as

s(i, j)π = s(i, j − 1)

and, consequently,

s(i, j)πk = s(i, j − k).

The partition F(s) is unique for every string.

For example, the Lempel-Ziv factorization of the sequence
u = 10011101001011 is F(s) = 1.0.01.11.010.0101.1, where a dot
delimits each factor.

The LZ76 complexity CLZ(s) (= |F(s)|) of the sequence s, is
defined as the number of factors in its factorization. In the
example above, CLZ(s)=7.

Defining

cLZ(s) =
CLZ(s)

N/ log N
. (21)

Ziv [17] proved that, if s is the output from an ergodic source,
then

lı́m sup
N→∞

cLZ(s) = h(s). (22)

Where h(s) is the same entropy rate given by equation (14).
This is the base of using cLZ as an estimate of hµ for N � 1.

Eq. (22) is valid in the infinite limit. In practical cases, eq. (21)
is used as an estimate for the entropy density (further details
can be found in [11]).
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Table 1. List of maximum Lyapunov exponent λΓ and µ values for all non-equivalent ECA rules. Blue corresponds to W3 type rules and red to W4 type rules2.
No. λΓ µ No. λΓ µ

0 -∞ = log(3µ) 0 56 0 1/3
1 -∞;0;1/2 log 3 0.368(2) 57 log 2 = log (3µ) 2/3
2 -∞;0 1/3 58 -∞; 0 0.417(6)
3 -∞;0;1/2 log 2 0.352(6) 60 log 2 = log (3µ) 2/3
4 -∞;0 0.344(4) 62 0.43(2) 0.47(2)
5 -∞;0;1/2 log 2 0.345(6) 72 -∞; log 2 0.15(2)
6 -∞;0;0.54(1) 0.611(3) 73 0.79(3) 0.749(4)
7 -∞;0;1/2 log 2 0.258(7) 74 -∞;0 0.520(6)
8 -∞ 0 76 -∞;0 0.32(1)
9 -∞;0 0.607(2) 77 -∞;0 0.22(2)
10 -∞;0 1/3 78 -∞;0;0.480(3) 0.373(3)
11 -∞;0 0.3774(8) 90 log 2 = log (3µ) 2/3
12 -∞;0 1/3 94 -∞;0;1/2 log 2 0.486(5)
13 -∞;0.48(2) 0.26(1) 104 -∞; log 2 0.12(2)
14 -∞;0 0.34(1) 105 log 3 = log (3µ) 1
15 0 = log (3µ) 1/3 106 log 2 = log (3µ) 2/3
18 -∞; log 2 0.584(2) 108 0; log 2 0.549(8)
19 -∞;0;1/2 log 2 0.28(1) 110 0.654(3) 0.6212(2)
22 -∞;0.865(2) 0.830(1) 122 -∞;0.652(3) 2/3
23 -∞;0; log 2 0.22(2) 126 -∞; log 2 2/3
24 -∞;0 0.458(4) 128 -∞ 0
25 -∞;0.52(1) 0.588(2) 130 -∞;0 1/3
26 -∞;0;0.411(3) 0.6176(5) 132 0 0.355(6)
27 -∞;0 0.458(4) 134 0.51(1) 2/3
28 0;0.48(1) 0.543(3) 136 -∞ 0
29 0;1/2 log 2 0.460(6) 138 -00;0 0.367(7)
30 0.6596(6) 0.6665(1) 140 -∞;0 0.353(9)
32 -∞ 0 142 -∞;0.306(3) 0.349(9)
33 0;0.55(7) 0.620(2) 146 log 2 0.6273(6)
34 -∞;0 1/3 150 log 3 = log (3µ) 1
35 -∞;0 0.437(2) 152 -∞;0 0.456(3)
36 -∞;0 0.377(9) 154 0;0.482(9) 2/3
37 0;0.352(4) 0.539(2) 156 0; log 2; 1/2 log 3 2/3
38 -∞;0;0.53(1) 0.613(2) 160 -∞ 0
40 -∞ 0 162 -∞;0 0.276(7)
41 0.864(1) 0.8036(8) 164 0 0.392(6)
42 -∞;0 0.363(3) 168 -∞ 0
43 -∞;0 0.34(1) 170 0 = log (3µ) 1/3
44 -∞;0;0.481(1) 0.444(5) 172 -∞;0 0.418(4)
45 log 2 = log (3µ) 2/3 178 -∞;0; log 2 0.22(1)
46 -∞;0 0.450(8) 184 0 0.344(7)
50 -∞;0 0.281(8) 200 -∞;0; log 2 0.28(1)
51 0 = log (3µ) 1/3 204 0 = log (3µ) 1/3
54 log 2 0.680(1) 232 -∞;0; log 2 0.22(1)

Table 2. Strong type rules. Blue corresponds to W3 rules and W4 rules in red.
strong λΓ <0, µ = 0

rule 0 8 32 40 128 136 160 168
strong λΓ = 0, W2

rule 15 51 56 132 164 170 184
strong λΓ >0

rule 30 41 45 54 57 60 62 73
90 105 106 110 134 146 150

This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0, http://
creativecommons.org/licenses/by-nc/4.0) license.

2The number between parentheses is the error in the calculation.
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