DFT study of BaKN<sub>3</sub> and BaRbN<sub>3</sub> Perovskites: Revealing their Mechanical, Optoelectronic, and Magnetic Properties
PDF

Keywords

Density-functional theory atomic and molecular physics
structural properties of materials
magnetic properties of
optical properties of
in material science

How to Cite

(1)
DFT Study of BaKN3 and BaRbN3 Perovskites: Revealing Their Mechanical, Optoelectronic, and Magnetic Properties. Rev. Cubana Fis. 2024, 41 (2), 103-112.

Abstract

The full-potential linearized augmented plane waves (FP-LAPW) method, which is based entirely on density functional theory (DFT), was used to investigate the structural, electronic, magnetic, optical, and elastic properties of BaXN3(X=K, Rb). This method also employs the Perdew-Burke-Ernzerhof generalized gradient approximation (GGA-PBE) and a modified Beck Johnson TB-mBJ potential in the exchange correlation term. When the resulting structural properties were examined, the findings showed that our compounds are more stable when they are configured as ferromagnetic materials. The total and partial density of state curves were used to assess the contributions of the various bands. Additionally, we discovered that the total magnetic moment is an integer of 6 µB, confirming the half-metallic nature. The mechanical stability of these compounds has been discovered. The elastic parameters are obtained, including the elastic constants, bulk modulus, anisotropy factor, Poisson's ratio, and Pugh's ratio.

PDF

References

[1] I. Zutic, J. Fabian and S. D. Sarma, Rev. Mod. Phys. 76 (2004) 323-410

[2] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, V. S. von Molnár., M. L Roukes and D. M. Treger, science. 294 (2001) 1488-1495.

[3] K. L. Wang, J. G. Alzate and P. Khalili Amiri, J. Phys. D: Appl. Phys. 46 (2013) 074003-074012

[4] H. Lee, F. Ebrahimi, P. K. Amiri and K. L. Wang, IEEE Magn. Lett. 7 (2016) 1-5

[5] W. Zhao, E. Belhaire, C. Chappert, P. Mazoyer, IEEE. Computer. Society. Annual. Symposium on VLSIIEEE. 40 (2008) 40-45.

[6] K. Nikolaev, P. Kolbo, T. Pokhil, X. Peng, Y. Chen, T. Ambrose and O. Mryasov, Appl. Phys. Lett. 94 (2009) 222501-222503

[7] R. J. Soulen Jr, J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry and J. M. D. Coey, Science 282 (1998) 85-88.

[8] J. M. De Teresa, A. Barthélémy, A. Fert, J. P. Contour, F. Montaigne and P. Seneor, Science 286 (1999) 507-509.

[9] P. A. Dowben, N. Wu and C. Binek, J. Phys.:Condens. Matter 23 (2011)171001-171003.

[10] X. Kozina, J. Karel, S. Ouardi, S. Chadov, G. H. Fecher and C. Felser, G. Stryganyuk, B. Balke, T. Ishikawa, T. Uemura, M. Yamamoto, and E. Ikenaga, Phys. Rev. B 89 (2014) 125116-125125.

[11] S. Tsunegi,Y. Sakuraba, M. Oogane, K. Takanashi and Y. Ando, Appl. Phys. Lett. 93 (2008) 112506-112508

[12] T. Ishikawa, T. Marukame, H. Kijima, K. I. Matsuda, T. Uemura, M. Arita and M. Yamamoto, Appl. Phys. Lett. 89 (2006) 192505-192507

[13] Y. WANG, J. ZHENG*,Z. NI,R. FEI, Q. LIU, R. QUHE, C. XU, J. ZHOU, J. GAO and J.LU, Nano. 07 (2012) 1250037-12500345

[14] H. X. Liu, H.Y. Honda, T. Taira, K. I. Matsuda, M Arita, T. Uemura and M. Yamamoto, Appl. Phys. Lett. 101 (2012) 132418-132422

[15] J. Y. T. Wei, N. C. Yeh, R. P.Vasquez and A. Gupta, J. Appl. Phys. 83 (1998) 7366-7366

[16] M. Ram, A. Saxena, A. E. Aly and A. Shankar, RSC Adv. 10 (2020) 7661-7670

[17] J. H. Park, S. K. Kwon and B. I. Min, Phys. Rev. B: Condens. Matter Mater. Phys. 65, (2002) 174401-174404

[18] I. Galanakis and E. Şası̧oğlu, Appl. Phys. Lett 99 (2011) 052509-052511

[19] Z. Wang, Q. Jing, M. Zhang, X. Dong, S. Pan and Z. Yang, RSC Adv. 4 (2014) 54194-54199

[20] W. Sun, C. J. Bartel, E. Arca, S. R. Bauers, B. Matthews, B. Orvañanos, B. R. Chen, M. F. Toney, L. T. Schelhas, W. Tumas, J. Tate, A. Zakutayev, S. Lany, A. M. Holder and G. Ceder, Nat. Mater. 18 732-769 (2019).

[21] A. Zakutayev, S. R. Bauers and S. Lany, Chem. Mater 34 (2022)1418-1438

[22] N. Hasan, M. Arifuzzaman and A. Kabir, RSC Adv, 12 (2022) 7961-7972.

[23] S. F. Matar and G. Demazeau, J. Solid State Chem. 183 (2010) 994-999

[24] R. Sarmiento-Pérez, T. F. T. Cerqueira, S. Körbel, S. Botti and M. A. L. Marques, Chem. Mater. 27 (2015) 5957-5969

[25]M. C. Jung, K. W. Lee and W. E. Pickett, Phys. Rev. B. 97 (2018) 121104-121109

[26] V. A. Ha, H. Lee and F. Giustino, Chem. Mater. 34 (2022) 2107-2115

[27]Y. W. Fang, C. A. J. Fisher, A. Kuwabara, X. W. Shen, T. Ogawa, H. Moriwake, R. Huang and C. G. Duan, Phys. Rev. B. 95 (2017) 014111-014119

[28] J. A. Flores-Livas, R. Sarmiento-Pérez, S. Botti, S. Goedecker and M. A. L. Marques, J. Phys. Mater. 2 (2019) 025003-025013

[29] Y. Wang, Q. Wang, Z. Liu, Z. Zhou, S. Li, J. Zhu, R. Zou, Y. Wang, J. Lin and Y. Zhao, J. Power. Sources. 293 (2015) 735-740.

[30]P. Bacher, P. Antoine, R. Marchand, P. L’Haridon, Y. Laurent and G. Roult, J. Solid State Chem. 77 (1988) 67-71

[31]N. E. Brese and F. DiSalvo, J. Solid State Chem. 120 (1995) 378-380

[32]S. J. Clarke, B. P. Guinot, C. W. Michie, M.J. Calmont and M.J. Rosseinsky, Chem. Mater. 14 (2002) 288-294

[33]M. Yang, J. Oró-Solé, A. Kusmartseva, A. Fuertes and J. P. Attfield, J. Am. Chem. Soc. 132 (2010) 4822-4829

[34]A. Fuertes, J. Mater. Chem. 22 (2012) 3293–3299

[35] A. P. Black, H. E. Johnston, J. Oró-Solé, B. Bozzo, C. Ritter and C. Frontera, Chem. Commun. 52 (2016) 4317-4320

[36]K. R. Talley, J. Mangum, C. L. Perkins, R. Woods-Robinson, A. Mehta, B. Gorman, G. L. Brennecka and A. Zakutayev, Adv. Electron. Mater. 5 (2019) 1900214-1900220

[37]R. Niewa, Eur. J. Inorg. Chem. 2019 (2019) 3647–3660

[38]K. R. Talley, C. L. Perkins, D. R. Diercks, G. L. Brennecka and A. Zakutayev, Scienc.e 374 (2021) 1488-1491

[39] S. D. Kloß, M. L. Weidemann, J. P. Attfield and J. P. Angew. Chem., Int. Ed. 60 (2021) 22260-22264

[40] V. N. Antonov, L. V. Bekenov and A. Ernst, Phys. Rev. B. 94 (2016) 035122-035137

[41] P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) B864- B871

[42] W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1133–A1138

[43] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Austria, 2012).

[44] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868

[45] F. Tran and P. Blaha, Phys. Rev. Lett. 102 (2009) 226401-226404

[46] D. Koller, F. Tran and P. Blaha, Phys. Rev. B 83 (2011) 195134-195143.

[47] J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865- 3868

[48] D.J. Singh, Phys. Rev. B 82 (2010) 155145-155155

[49] S.D. Guo and B.G. Liu, Europhys. Lett.93 (2011) 47006-47011

[50] Y. Rakita, S. R. Cohen, N. K. Kedem and G. Hodes, MRS Commun. 5 (2015) 623-629

[51] F. Wooten, Optical Properties of Solids. Academic Press, New York (1972).

[52] G. Grimvall, Thermophysical Properties of Materials. Amsterdam: Elsevier (1999).

[53] R. Hill, The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Sect. A. 65 (1952) 349- 354

[54] J. Bartolome, D. Gonzalez, R. Navarro, C. Ridou, M. Rousseau and A. Bulou, J. Phys. C. Solid State Phys. 20 1987) 2819-2827.

[55] F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30 (1944) 244-247

[56] H. Benaissa, S. Benatmane, S. Amari, K. Obodo, L. Beldi, H. Bendaoud, and B. Bouhafs, Spin 8 (2018) 1850017.

[57] S. Benatmane, H. Bendaoud, L. Beldi, B. Bouhafs, S. Méçabih, and B. Abbar, J. Supercond. Nov. Magn., 31 (2018) 2767-2776.

[58] M. Born, Proc. Camb. Phil. Soc. 36 (1940) 160-172

[59] W. Voigt, Lehrbuch der Kristallphysik, Taubner, Leipzig, 1928.

[60] A. Reuss and Z. Angew, Math. Mech. 9 (1929) 49-58

[61] R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. 65 (1952) 349-354

[62] S.F. Pugh, Philos. Mag. A 45 (1954) 823-843.

[63] R. Gaillac, P. Pullumbi and F.X. Coudert, J. Phys. Condens. Matter. 28 (2016) 275201-275208.

[64] V. Erofeev and I. Pavlov, J. Appl. Mech. Tech. Phys. 56 (2015) 1015-1020.

[65] F. Tanaka and H. Takahashi, J. Chem. Phys. 83 (1985) 6017-6026.

[66] Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu and J. Meng, Phys. Rev. B. 76 (2007) 054115-054129

[67] F. Peng, L. Han, H. Fu and X. Cheng, Phys. Status. Solidi. 246 (2009) 1590-1596.

[68] N. Korozlu, K. Colakoglu, E. Deligoz and S. Aydin, J. Alloy. Comp. 546 (2013) 157-164.

[69] G. Chen and P. Zhang, Defence. Tech. 9 (2013) 131-139.

[70] S. Benatmane and B. Bouhafs, Comput. Condens. Matter, 19 (2019) e00371- e00381

[71] S. Benatmane and S. Cherid, JETP Letters, 111 (2020) 694–702.

[72] S. Benatmane, M. Affane, Y. Bouali, B. Bouadjemi, S. Cherid, and W. Benstaali, Rev. Mex. Fis. 69 (2023) 011003-011012

[73] S. Benatmane, L. Beldi, H. Bendaoud, S. Méçabih, B. Abbar, and B. Bouhafs, Ind. J. Phys. 93 (2019) 627-638

[74] G. Harbeke, In Optical properties of Solids: F. Abelès (Ed.), North-Holland, Amsterdam, 1972.

[75] P. J. L. Hervé and L. K. J. Vandamme, Infrared Phys. Technol. 35 (1994) 609-615.

[76] B. Bouadjemi, M. Houari, S. Benatmane, M. Matougui, S. Haid, S. Bentata, and B. Bouhafs, Comput. Condens. Matter. 26 (2021) e00531- e00541

[77] M. Fox, Optical properties of solids. Oxford master series in condensed matter physics," ed: Oxford University Press, Oxford, (2001).

[78] S. Benatmane, Emerg. Mater.5 (2021) 1797-1817

[79] S. Azam, S. Goumri-Said, S. A. Khan and M B. Kanoun, J. Phys. Chem. Solid. 138 (2020) 109229-109237

[80] S.Z.A. Shah, S. Niaz, T. Nasir and J. Sifuna, Results. Chem. 5 (2023) 100828.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Cuban Physical Society & Faculty of Physics of the University of Havana