Mathematical Treatment of the Canonical Finite State Machine for the Ising Model
 Entropy  density h map
PDF

Keywords

Ising Model
Complexity
Entropy

How to Cite

(1)
Mathematical Treatment of the Canonical Finite State Machine for the Ising Model. Rev. Cubana Fis. 2025, 42 (1), 3-11.

Abstract

The complete framework for the minimal deterministic automata construction of the one-dimensional Ising model is presented. The approach follows the known treatment of the Ising model as a Markov random field,  where the local characteristic is usually obtained from the stochastic matrix. The problem is the inverse relation or how to get the stochastic matrix from the local characteristics given via the transfer matrix treatment. The obtained expressions allow for performing complexity-entropy analysis of particular instances of the Ising model. Two examples are discussed: the 1/2-spin nearest neighbour and next nearest neighbours Ising model.

PDF

References

[1] P. Grassberger, Int. J. Theor. Phys. 25, 907(1986).

[2] J. P. Crutchfield, Knowledge and meaning... chaos and complexity, in Modeling complex phenomena, edited by L. Lam and V. Naroditsky, pp. 66–101, Springer, Berlin (1992).

[3] J. P. Crutchfield, Nature Physics 8, 17 (2012).

[4] D. P. Varn, G. S. Canright, and J. P. Crutchfield, Acta Cryst. A69, 413 (2013).

[5] V. Ryabov, D. Neroth, Chaos 21, 037113 (2011).

[6] R. Haslinger, K. L. Klinker, and C. R. Shalizi, Neural Computation 22, 121 (2010).

[7] E. Rodriguez-Horta, E. Estevez-Rams, R. Neder, and R. Lora-Serrano, Acta. Cryst. A73, 357(2017).

[8] E. Rodriguez-Horta, E. Estevez-Rams, R. Lora-Serrano, and R. Neder, Acta. Cryst. A73, 377 (2017).

[9] J. P. Crutchfield, Physica D 75, 11 (1994).

[10] C. R. Shalizi and J. P. Crutchfield, J. Stat. Phys. 104, 817 (2001).

[11] D. A. Lavis, G. M. Bell, Statistical Mechanics of Lattice Systems, Springer, Berlin (1999).

[12] D. P. Feldman, Computational mechanics of classical spin systems, Ph.D. Dissertation, Physics Department, University of California, Davis, (September, 1998).

[13] J. P. Crutchfield and D. P. Feldman, Phys. Rev. E 55, R1239(R) (1997).

[14] D. P. Feldman, J. P. Crutchfield, Santa Fe Institute Working Paper 98-04-026 (2008).

[15] E. Behrends, Introduction to Markov chain, Springer, Heidelberg (2000).

[16] J. F. Dobson, J. Math. Phys. 10, 40 (1969).

[17] P. Grassberger, arXiv preprint arXiv:1708.03197v3 (2018).

[18] D. P. Feldman, C. S. McTeague, and J. P. Crutchfield, Chaos 18, 043106 (2008).

[19] J. Crutchfield and D. P. Feldman, Chaos 13, 25 (2003).

[20] T. Morita and T. Horiguchi, Phys. Lett. A 41, 9 (1972).

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Cuban Physical Society & Faculty of Physics of the University of Havana