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OUR DUTY IS TO FOSTER QUANTUM PHYSICS IN CUBA
NUESTRO DEBER ES IMPULSAR LA FÍSICA CUÁNTICA EN CUBA

R. Mulet-Genicio

The proclamation of 2025 as the International Year of
Quantum Science and Technology (IYQST) by the United
Nations commemorates a century since the moment in which
quantum mechanics revolutionized our understanding of the
physical world. This designation recognizes the scientific
triumphs of the past from Heisenberg’s uncertainty principle
to Schrödinger’s wave equation, and the technologies
quantum science has enabled, such as semiconductors,
computers, lasers, MRI imaging, and nuclear energy. Today,
we are on the brink of a second quantum revolution
with fast progress in quantum computing, sensing, and
encryption that may soon transform our societies. This
global celebration reminds all of us of the urgent need to
harness physics in general and quantum physics in particular
for the sustainable development of our country and of
humanity. Cuba’s journey in quantum physics is a testament
to the resilience and ingenuity of our community. Indeed,
Cuban physicists have mastered quantum mechanics: It has
been one of our most fertile research areas for several
decades. With a lot of effort, our community has continued
working in the field despite the very limited resources
available over the past 30 years. Quantum physics is part
of our undergraduate programs and is revisited in several

postgraduate courses at the Cuban universities where physics
is taught. Theoretical and experimental work in the field,
together with the help of international collaborations, is an
important part of our doctoral programs. I recommend to
the readers the editorial Año Internacional de la Ciencia y la
Tecnologa Cuántica by C. Rodrı́guez-Castellanos [1]. The work
highlights pivotal periods from the initial introduction of
quantum theory to contemporary developments showcasing
how Cuba has engaged in this cutting-edge field. As we
commemorate the International Year of Quantum Science
and Technology, let me reaffirm in the name of the Cuban
Physical Society our commitment to continue to foster physics
and quantum physics in Cuba. This year serves as a call
to action: to strengthen collaborations, invest in young
talent, and bridge the gap between fundamental science
and applications. Quantum technologies promise solutions
to pressing challenges, from energy to healthcare. If Cuba is
expected to be a country of men and women of science, our science
must contribute to these solutions.

[1] C. Rodrı́guez-Castellanos, An. Acad. Cienc. Cuba, 15,
e2911 (2025)

This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International
(CC BY-NC 4.0, https://creativecommons.org/licenses/by-nc/4.0) license.
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MATHEMATICAL TREATMENT OF THE CANONICAL FINITE STATE
MACHINE FOR THE ISING MODEL
TRATAMIENTO MATEMÁTICO DE LA MÁQUINA CANÓNICA DE ESTADO FINITO PARA EL MODELO
DE ISING
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The complete framework for the minimal deterministic automata
construction of the one-dimensional Ising model is presented. The
approach follows the known treatment of the Ising model as a Markov
random field, where the local characteristic is usually obtained from
the stochastic matrix. The problem is the inverse relation or how
to get the stochastic matrix from the local characteristics given via
the transfer matrix treatment. The obtained expressions allow for
performing complexity-entropy analysis of particular instances of
the Ising model. Two examples are discussed: the 1/2-spin nearest
neighbour and next nearest neighbours Ising model.

El marco teórico para la máquina mı́nima determinı́stica del
model de Ising en una dimensión es presentado. El tratamiento
sigue el conocido modelo de Ising tratado como un campo
aleatorio de Markov, donde las caracterı́sticas locales son obtenidas
de la matriz estocástica. El problema abordado necesita la
relación inversa, o como obtener la matriz estocástica de las
caracterı́sticas locales, dadas a través del tratamiento de la matriz
de transferencia. Las expresiones obtenidas permiten realizar el
análisis de complejidad-entropı́a para instancias particulares del
modelo de Ising. Dos ejemplos son discutidos: el spı́n-1/2 de vecinos
más cercanos y el modelo de segundos vecinos más cercanos.

Keywords: complexity (complejidad); entropy (entropı́a); Ising model (Modelo de Ising).

I. INTRODUCTION

Minimal deterministic automata, introduced by Grassberger
[1] and further developed by Crutchfield et al. [2, 3], is an
approach to discovering and characterizing patterns in an
information processing system. Building from information
theory concepts, it has found applications in several fields
and proved its value in several contexts [4–8]. For a stochastic
process considered to be stationary, the minimal deterministic
automaton is its optimal minimal description, understood as
having the best (most accurate) predictive power while using
the least possible resources (minimal forecasting complexity)
[1,9]. Causality is taken in a general temporal sense: in a given
context, cause-to-effect relations are established between past
to future events [10].

The Ising model in one-dimension is the best known in
Statistical Physics and has become a common topic in most
Statistical Mechanics books (see, for example, [11]). Despite
its intensive scrutiny in different settings, under different
Hamiltonian and interaction ranges, its analysis, in terms of
information theory, as a symbol production system is more or
less recent. In fact, until 1998, this approach was not attempted
when Feldman et al. undertook the task of casting the Ising
model under such language [12–14]. Their work allowed
the deduction of closed expressions for the entropy density,
forecasting complexity, and effective measure complexity.
However, these previous treatments did not consider the
Ising model in the general framework of a Markov (Gibbs)
random field. While the previous approaches are sufficient

when nearest-neighbour interaction is considered, the more
general framework is necessary, beyond nearest-neighbour
interaction, to determine the general probability measure of
the associated Markov process [15]. This is what it aims at in
this contribution.

Despite being a well-studied system, working through all the
mathematical details involved to solve the inverse problem,
obtain the stochastic matrix from the Markov Field, and
build the minimal deterministic automata in the most general
setting in one dimension is worthwhile. Entropic magnitudes
follow, which are usually not treated in the Ising model. In
this light, we show the use of the developed framework via
two examples.

II. THE TRANSFER MATRIX FORMALISM

The Ising (-Lenz) model is probably the most studied
lattice-type model in statistical mechanics and is well
covered in several statistical physics books for nearest 1/2
spin neighbour interactions [11]. Let us briefly recap, for
completeness and notation purposes, the basic ideas of the
transfer matrix formalism (we closely follow Dobson [16]) but
in a general setting of a local type interaction Hamiltonian,
which is usually not found in texts.

Consider a one-dimensional chain of discrete values of length
L:

sL = s0s1s2 . . . sL−1,
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where si can take values from a finite alphabetΘ of cardinality
θ(= |Θ|) (there will be θL possible sequences sL). Each si is
called a spin. The interaction between spins of the sequence
has a finite range n such that it can be written as

E(si, si±k) =
{
Λ(si, si±k) 0 < k ≤ n

0 k > n . (1)

The sL sequence can be partitioned into blocks of length n

sL = [s0s1 . . . sn−1] . . . [s(N−1)ns(N−1)n+1 . . . sNn−1],

where it has been taken L = Nn. The expression can be
relabeled as

sL = [s(0)
0 . . . s

(0)
n−1][s(1)

0 . . . s
(1)
n−1] . . . [s(N−1)

0 . . . s(N−1)
n−1 ].

= η0η1 . . . ηN−1,

with

ηi = s(i)
0 s(i)

1 . . . s
(i)
n−1. (2)

The set of all possible blocks ηi will be denoted by Υ with
cardinality υ = θn. Υ will be taken as an ordered set (e.g.,
lexicographic order) where each ηi a natural number, between
0 and υ − 1, will be assigned. In what follows, ηi should be
understood not only as the configuration (2) but also as its
corresponding order in the set Υ; context will eliminate any
ambiguity.

As the interaction has range n, one spin corresponding to the
ηi block can only interact with all the spins within ηi (type I
interaction), and at least one spin from the adjacent blocks ηi±1
(type II interaction).

Assuming the symmetry Λ(si, s j) = Λ(s j, si), the interaction
energy of type I for the ηp block, in the presence of an external
field B, will be

xηp = −B
n−1∑
i=0

s(p)
i +

n−2∑
i=0

n−1∑
k=i+1

Λ(s(p)
i , s

(p)
k ), (3)

which defines a vector ⟨X| of length υ. The contribution of type
II will be denoted by yηpηp+1 , and will be given by

yηpηp+1 =

n−1∑
i=0

i∑
k=0

Λ(s(p)
i , s

(p+1)
k ), (4)

which defines a υ × υ matrix. In general yηiη j , yη jηi

which makes Y non-symmetric. The energy of the whole
configuration SL can then be written as

Λ(sL) = xη0 + yη0η1 + xη1 + yη1η2 + . . . + yηN−2ηN−1 + xηN−1 . (5)

The vector ⟨U| and the matrix V are then introduced as

uηi = exp(−
1
2
βxηi ) (6)

vηiη j = exp[−β(
1
2

xηi + yηiη j +
1
2

xη j )]. (7)

where β ≡ (kBT)−1 is the Boltzmann product. V is known as
the transfer matrix.

The partition function follows

ZNn =

υ−1∑
η0=0

υ−1∑
η1=0

. . .
υ−1∑
ηN−1=0

exp[−βΛ(sL)]

= ⟨U|VN−1
|U⟩,

(8)

for free boundary conditions. For periodic boundary
conditions

ZNn = Tr(VN). (9)

Tr(M) denotes the trace of the matrix M.

As the trace of a matrix is invariant to similarity
transformations, from equation (9), for close boundary
conditions,

ZNn =
∑
λN

i . (10)

λi are the eigenvalues of the matrix V. If λi is degenerate,
then the term is added as many times as its multiplicity. If the
eigenvalues are labeled in non increasing order (|λi| ≥ |λ j| →

j ≥ i), then for N ≫ 1

ZNn = λ
N
0 (11)

where λ0 is the dominant eigenvalue; according to
the Perron-Frobenius theorem, it is real, positive, and
non-degenerate [15].

For open boundary conditions, again using the Perron-
Frobenius theorem for a square positive defined matrix V,
the following holds

lı́m
N−→∞

VN

λN
0

= |ra0⟩⟨la0|, (12)

where ⟨ la0| and | ra0⟩ are, respectively, the left and right
eigenvectors corresponding to the dominant eigenvalue. The
eigenvectors are normalized in the sense of ⟨ la0| ra0⟩ = 1. The
matrix | ra0⟩⟨ la0| is known as the Perron projection matrix.
Using (12) and (8) we arrive at

ZNn = ⟨U| ra0⟩⟨ la0|U⟩λN−1
0 (13)

which, in the particular case of a diagonalizable matrix,
reduces to

ZNn = u2
0⟨a0|a0⟩λ

N−1
0 (14)

and ui are the components of the vector ⟨U| in the orthogonal
base, defined by the eigenvectors ⟨ai|. It is well documented
how the thermodynamic magnitudes can be obtained from
the partition function [11].

The probability of a given spin chain will be given by

Pr(sL) = 1
ZNn

e−βΛ(sL)

= 1
ZNn

(
Uη0 Vη0η1 Vη1η2 . . .VηN−2ηN−1 UηN−1

)
=

Uη0 UηN−1

MλN−1
0

N−2∏
i=0

Vηiηi+1

(15)
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valid for free boundary conditions, and M ≡ ⟨U|ra0⟩⟨ la0|U⟩.
For periodic boundary conditions

Pr(sL) =
1
λN

0

N−2∏
i=0

Vηiηi+1 (16)

where in both cases, N ≫ 1.

III. ISING MODEL AS A MARKOV (GIBBS) RANDOM
FIELD

The Ising model is a particular case of a Gibbs random field
[15], where a Markov random field can be defined

Pr(ηi = η|sL
− ηi) = Pr(ηi = η|ηt = bt for t ∈ Ni, bt ∈ Υ). (17)

The ηi value is conditioned only in the neighbourhood and
not on the entire spin configuration.The probabilities given
by (17) are called the local characteristics associated with P.

If sL
− ηi is the configuration sL without considering the block

ηi, then the probability Pr(ηi|sL
− ηi) that the i-block has value

ηi when all the other spins (that is, excluding the ηi block) will
have the configuration sL

− ηi the product rule will given by,

Pr(ηi|sL
− ηi) =

Pr(sL)
Pr(sL − ηi)

=
Pr(sL)∑

sL∗
Pr(sL∗)

(18)

where the sum sL∗ is over all configurations identical to sL

except, possibly, for the block ηi.

Using equation (15), the probability of a configuration will be

Pr(sL) = 1
ZNn

e−βΛ(sL)

=
1

ZNn
e−βxηN−1

N−2∏
j=1

e−βxη j e−βyη jη j+1

(19)

and,

Pr(sL
− ηi) =

∑
ηk

e−βyηi−1ηk e−βxηk e−βyηkηi+1 . (20)

The local characteristics equation (18) is then

Pr(ηi|sL
− ηi) =

Vηi−1ηi Vηiηi+1∑
ηk

Vηi−1ηk Vηkηi+1
(21)

for blocks ηi not at the extremes.

For the first block

Pr0(η0|sL
− ηi) =

Uη0 Vη0η1∑
ηk

Uηk Vηkη1 (22)

A similar expression can be found for the last block.
Expression (21) has the important consequence that

Pr(ηi|sL
− ηi) = Pr(ηi|ηi−1, ηi+1) (23)

In the associated Markov process, the spin chain is considered
a sequential process where blocksη are “emitted” sequentially.

In this sense, the probability that, at a given moment, a block
ηi is the output of the Markov process is conditioned only on
the previously emitted block. In this sense, we can describe a
transition probability from one emitted block to the next and
associate a probability with it.

Consider the ηi blocks as describing the possible states of
an arbitrary block of spins, then Υ is the set of all states. A
stochastic matrix P can be defined as

Pi j = Pr(η j|ηi). (24)

which describes the transition probability from state ηi to state
η j. By definition

∑
j Pi j = 1. If ⟨p∞| is the vector of probabilities

over the blocks ηi (the probability that a given block of spins
is in a given state), then it is well known that the stationary
distribution [15] is given by

⟨p∞| = ⟨w0| (25)

where ⟨w0| is the left dominant eigenvector of the matrix P.
The vector ⟨p∞| allows to calculate Pr(ηi) when the Markov
process has been running for a sufficiently long time.

The local characteristics can be written in terms of the
stochastic matrix P using Bayes theorem

Pr(ηi|ηi−1, ηi+1) =
Pr(ηi |ηi−1)Pr(ηi+1 |ηiηi−1)

Pr(ηi+1 |ηi−1)

=
Pr(ηi |ηi−1)Pr(ηi+1 |ηi)∑

l
Pr(ηl |ηi−1)Pr(ηi+1 |ηl)

(26)

where the Markov character of the field has been used, and
the total probability theorem justifies the last step.

Equation (26) can be rewritten as

Pr(ηi|ηi−1, ηi+1)
∑
l

Pr(ηl|ηi−1)Pr(ηi+1|ηl) =

Pr(ηi|ηi−1)Pr(ηi+1|ηi)
(27)

which forms, when written for each ηi, an homogeneous
system of quadratic forms. Such a system can have a
non-trivial solution if it is undetermined, which happens if the
square of the number of unknowns is larger than the number
of equations.

There are ν = θn possible different blocks η. Pr(ηi|ηi−1, ηi+1) is
known from (21). As each local characteristic is determined
by three η’s, there will be ν3 equations. Pr(ηi|ηk) only depends
on the actual values of ηi and ηk and not on their position,
therefore there will be ν2 unknowns. The relations
ν∑
i

Pr(ηi|η j) = 1 ∀ j

must be added that eliminates ν unknowns. The total number
of unknowns is ν(ν− 1), and the total number of equations ν3.

ν3 < ν2(ν − 1)2 =⇒ ν > 3.6

As we seek solutions for integer values of ν, the effective
solution will be ν ≤ 4. Additional symmetry of the transfer
matrix (e.g. ν = 2) can lead to further reduction of the
equations, and the system could also have a non-trivial
solution for such cases.
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Returning to equation (27) and rewriting for any local
characteristic

Pr(ηi|η j, ηm)
∑
l

Pr(ηl|η j)Pr(ηm|ηl) =

Pr(ηi|η j)Pr(ηm|ηi),
(28)

introducing

Yl( j,m) = Pr(ηl|η j)Pr(ηm|ηl) (29)

equation (28) can be written as

Pr(ηi|η j, ηm)
∑

l

Yl( j,m) = Yi( j,m). (30)

The normalization condition ( which can be derived from
equation (26)) over the local characteristics determines

ν∑
k

Pr(ηk|η j, ηm) = 1, (31)

Equation (30) is linear and homogeneous over the Yi( j,m)
which, upon solving for the non-trivial-case, leads to a system
of simple homogeneous quadratic equations (29) which can
be readily solved.

IV. ISING MODEL AS A MINIMAL DETERMINISTIC
AUTOMATA

The Markov character of the system means that for the
associated Markov process, the generation process can forget
all the past except the last block η−1 (the last n spins) to
determine, as certain as possible, the future. In other words, if
the local characteristics imply a stochastic matrix as equation
(28) implies, then all past configurations ←−s L with the same
last block η−1 condition (statistically) the same future, this fact
allows considering the Ising chain as a canonical finite state
machine or minimal deterministic automata.

If two blocks η−1 and η′
−1 give the same Pr(−→s L

|
←−s L), for all

possible futures −→s L, then η−1 y η′
−1 are said to belong to the

same causal state (Cp) and we write

η−1 ∼ η
′

−1,

where η−1, η′−1 ∈ Cp [10]. Two blocks of the same causal state
Cp define identical rows in the stochastic matrix.

The partition of the set Υ in classes of causal states is an
equivalence relation.The set of causal states, denoted by C,
uniquely determines the future of a sequence.

The probability of a causal state is directly deducible from
equation (25),

Pr(Cp) =
∑
η j∈Cp

Pr(η j) =
∑
η j∈Cp

p∞η j
(32)

As each causal state represents the set of past that determines
(probabilistically) the same future, the set of causal states
represents the memory the system has to keep to predict the
future.

The forecasting complexity [1], also known as statistical
complexity, has been defined as the Shannon entropy H over
the causal states [9]1

Cµ ≡ −
∑

Cp∈C

Pr(Cp) log Pr(Cp)

= H[C].

(33)

The logarithm is usually taken in base two, and the units are
then bit. Forecasting complexity measures how much memory
(resources) the system needs to predict the future optimally.
If the system has |C| causal states, then the forecasting
complexity has the upper bound

Cµ ≤ log |C|,

corresponding to a uniform distribution of probabilities. The
upper bound of the forecasting complexity is also known as
topological entropy.

The probability of occurrence of block ηi conditional on the
causal state C will be given by

Pr(ηi|C) =
∑
ηk

Pr(ηi|ηk ∩ C)Pr(ηk|C)

= Pr(ηi|η j; η j ∈ C)
∑
ηk∈C

Pr(ηk|C)

= Pr(ηi|η j; η j ∈ C)

(34)

in the first step, the total probability theorem was used. In the
second step, use has been made of the fact that conditioning
in ηk ∩ C is equal to conditioning in η j if the block belongs to
the causal state C and, finally

∑
ηk∈C

Pr(ηk|C) = 1.

On the other hand

Pr(η j) =
∑
ηk

Pr(η j|ηk)Pr(ηk)

=
∑

Ck∈C

∑
ηk∈Ck

Pr(η j|ηk)Pr(ηk)

=
∑

Ck∈C

Pr(η j|ηk′ , ηk′ ∈ Ck)Pr(Ck)

making use of equation (34) to get

Pr(η j) =
∑
Ck∈C

Pr(η j|Ck)Pr(Ck). (35)

which allows us to compute the occurrence of a block from
the probabilities over the causal states.

1We prefer to say that it is defined in such a way, rather than state that it follows from its original definition because as pointed out by Grassberger [17],
there is no proof that the minimal graph corresponds to the minimal forecasting complexity. However, in the kind of model we are studying, this seems to
be the case in general.
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The probability of a transition from one causal state to another
will be given by

Pr(Ck → Cp) ≡ Pr(Cp|Ck) =
∑
η j∈Cp

Pr(η j|Ck) (36)

We define the transition matrix T(η), whose elements are the
probability of going from state Ck to state Cp upon emitting a
block η:

T(η)
rq = Pr(Cr

η
→ Cq). (37)

By construction, the emission of a block η determines the
causal state uniquely to where the transition occurs (this is
called the unifiliar property [10]). In this sense, the generation
process is deterministic. Correspondingly, the connectivity
matrix T is defined as

Trq =
∑
η∈Σ

T(η)
rq = Pr(Cr → Cq) (38)

which connects causal states without regard to the emitted
block.

To account for the irreducible randomness, the entropy
density is defined as [18]

h = lı́mL→∞H[η0|η−Lη−L+1 . . . η−1]

= lı́mL→∞H[η0|
←−s L]

(39)

h is the uncertainty on the next emitted block η0 conditional
on having seen infinite previous blocks (spins). By definition,
h ≥ 0.

H[η0|
←−s L] = −

∑
η0

∑
η−n

. . .
∑
η−1

Pr(←−s Lη0) log Pr(η0|
←−s L)

= −
∑
η0

∑
η−N

. . .
∑
η−1

Pr(η0|
←−s L)Pr(←−s L) log Pr(η0|

←−s L)
(40)

where ←−s L = η−Nη−N+1 . . . η−1, , on the other hand, using
←−s L−n = η−N . . . η−2

Pr(sL) = Pr(sL−n
|η−1)Pr(η−1). (41)

use has been made of Bayes theorem. Substituting equation
(41) on equation (40) and reordering terms

H[η0|
←−s L] = −

∑
η0

[∑
η−1

Pr(η0|η−1)Pr(η−1) log Pr(η0|η−1)

{∑
η−N

. . .
∑
η−2

Pr(←−s L−n
|η−1)
}]
.

(42)

∑
η−N

. . .
∑
η−2

Pr(←−s L−n
|η−1)

is the probability that from η−1 any configuration is
conditioned and this probability is 1. Equation (42) then
reduces to

h = lı́m
L→∞

H[η0|
←−s L] = H[η0|η−1]

= −
∑

Cα∈C
Pr(Cα)

∑
ηk∈Σ

Pr(ηk|Cα) log Pr(ηk|Cα)
(43)

The mutual information between past and future is called
the effective measure complexity [1], also known as excess
entropy [18]

E ≡ I[←−s : −→s ], (44)

where I[X : Y] is the mutual information between X and Y.
From the finite range character of the interaction in the Ising
model

E = I[←−s : −→s ] = I[η−1 : η0]

= H[η−1] −H[η0|η−1]
(45)

where

H[ηi] =
∑
ηi∈Σ

Pr(ηi) log Pr(ηi), (46)

and

H[η0|η−1] = H[η0|
←−s L] = h

given by equation (43).

From equation (33) and (43) we arrive to the expression

E = Cµ − h. (47)

The effective measure complexity measures the resources
the system needs to optimally predict the future once the
irreducible randomness has been subtracted [18]. As E is
mutual information, it will always be a non-negative value,
which implies

Cµ ≥ h

If the system is perfectly periodic, then h = 0 and

Cµ = E.
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V. EXAMPLES

V.1. 1/2 nearest neighbors spin chain

B

(b)

J

(a)

(c)

Figure 1. 1/2 nearest neighbors spin chain. (a) The entropy density as a
function of the applied field B for ferromagnetic (J > 0), antiferromagnetic
(J < 0), and paramagnetic (J = 0) interaction. The Boltzmann factor in all
cases is taken as β = 1. (b) The entropy density h map as a function of
the system control parameter J and the applied field B. Black corresponds to
h = 0, and full orange to h = 1. Maximum disorder values happen along the
line with no applied field B = 0, with the paramagnetic state’s maximum at
J = 0. Boltzmann factor as in (a). (c) The diagram shows the phase diagram
for zero absolute temperature as a function of the parameters J and B. Two
phases can be identified: ferro- and antiferromagnetic.

The 1/2 nearest neighbour spin chain is defined by the

interaction Hamiltonian [20]

E = −B
∑

i

si − J
∑

j

s js j+1, (48)

where B is the external field, and J is the interaction parameter.
The η blocks set will be

η = ↓, ↑.

The local characteristics derived from equation (21) reduce to

Pr(↓ | ↓, ↓) = e4βJ

e2βB+e4βJ

Pr(↓ | ↓, ↑) = 1
e2βB+1

Pr(↑ | ↓, ↓) = 1
e4βJ−2βB+1

Pr(↑ | ↓, ↑) = e2βB

e2βB+1

Pr(↓ | ↑, ↓) = 1
e2βB+1

Pr(↓ | ↑, ↑) = 1
e2β(B+2J)+1

Pr(↑ | ↑, ↓) = e2βB

e2βB+1

Pr(↑ | ↑, ↑) = e2β(B+2J)

e2β(B+2J)+1 .

(49)

Solving the linear system of equation (30), results in the system
of quadratic equations

Pr(↓ | ↑)Pr(↑ | ↓) = e2βB−4βJPr(↓ | ↓)

Pr(↑ | ↑) = e2BβP(↓ | ↓),
(50)

together with the normalization conditions

Pr(↓ | ↑) + Pr(↑ | ↑) = 1

Pr(↓ | ↓) + Pr(↑ | ↓) = 1
(51)

lead to the solution for2

Pr(↓ | ↓) =
2e2βJ

√

4e2βB + e4β(B+J) − 2e2β(B+2J) + e4βJ + e2β(B+J) + e2βJ
.

(52)

The other entries of the stochastic matrix follow.
2This result is equivalent to the one reported as equation (7.31) in [12], but, if one calculates all matrix entries from equation (7.15), the row normalization

condition is violated. Therefore, the correctness of the entries in (7.31) in [12] is accidental due to forcing row normalization.
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(b)

(a)

Figure 2. 1/2 nearest neighbors spin chain. (a) The dependence of the
magnetization M with the disorder measured by the entropy density B. 105

points were used with random parameters in the range β ∈ [10−4, 102],
J ∈ [−1.5, 0] and B ∈ [−3, 3]. The green points correspond to β = 10, while the
rust colors are for β = 0.2, as labeled in the figure. The rust color degradation
grows lighter the larger the M value and is used as a visual aid. For all points,
the spin coupling is antiferromagnetic. (b) The complexity-entropy diagram for
the 1/2-nearest neighbor Ising model. Simulation conditions follow the same
parameter range as in (a). The rust color degradation grows lighter the larger
the M value and is used as a visual aid.

The behavior of the entropy density h with the applied field
for the three signs of the interaction term is shown in Figure
1a for β = 1. The results are consistent with the usual graphic
of the Boltzmann entropy for this model. The applied field
B generally lowers the system’s entropy as it tends to align
the spins along the field. In the case of the antiferromagnetic
coupling, with an increasing value of B, first entropy increases
due to random spins, initially contrary to the external field
flips, leading to increasing disorder. For the larger field, B,
the order starts prevailing as further production of aligned
spins overcomes the initial disordering process. For B = 0, the
system starts with an initial amount of randomness (h > 0) for
all signs of J as temperature introduces disorder.

In Figure 1(b), the amount of disorder as a function of the
applied field B and interaction parameter J. The maximum
value of h, for a given value J, is attained at the line B = 0
and is the result of β > 0. The absolute maximum value of h
is taken for B = 0 and J = 0. Increasing the applied field and
interaction parameter decreases the spin system’s disorder.
Compare the entropy map with the phase diagram of the

spin system at zero temperature (1(c)). The map of effective
measure complexity for β→∞ reproduces the phase diagram
(not shown). However, for β < ∞, the entropy density map
merely indicates the mapping of randomness regardless of the
underlying pattern, whether ferro- or antiferromagnetic.

The behavior of the magnetization with the disorder as
measured through h can be seen in figure 2a. From
the stochastic matrix, the two-state minimal deterministic
automata were built. The plot was calculated for 105 points,
randomly taking the parameters’ value but keeping J < 0.
First, we notice that three magnetization values are possible
at zero disorder h = 0, two at the extremes, corresponding
to the spin alignment forced by a sufficiently strong applied
field B, and a zero magnetization at B = 0. At lower
temperatures (β = 10), for a given disorder value of h, the
amount of magnetization that can be accommodated around
the vanishing magnetization has fewer values than for larger
temperatures β = 0.2. Also, increasing temperature makes
more disorder available for the system, which is seen for the
larger possible values of h.

Finally, (h,E) was calculated using the same procedure for the
magnetization plot and is shown as a complexity map in figure
2b. This type of complexity map has been discussed before
[18]. Small values of the disorder can accommodate a large
range of effective measure complexity values, which means
varying probability between the two possible causal states. As
disorder increases, the system loses structure, tending towards
a single-state process that, although increasingly random, is
also increasingly less complex.

V.2. 1/2 next nearest neighbors spin chain

If a second coordination is added, the 1/2 next nearest
neighbors spin chain, the interaction Hamiltonian [20] now
is given by

E = −B
∑

i

si − J1

∑
j

s js j+1 − J2

∑
k

sksk+2. (53)

where B is the external field, and J1, J2 are spin coupling
parameters. The η blocks set will be

η = ↓↓, ↓↑, ↑↓, ↑↑,

again, the value 1 corresponds to spin up, whereas −1
corresponds to spin down.

Figure 3 above shows the effective measure complexity as a
function of J1 and J2 for the ground state (β → ∞) at zero
field (B = 0). While in the nearest neighbor case, only the
ferromagnetic and antiferromagnetic case was found in the
phase diagram, here, besides those two, a third ordered phase
comes into existence, with a periodicity of 4, which can be
regarded as a higher coordination anti-ferromagnetic phase.
↑↑↓↓. This phase results from the larger range of interaction
between the spins and competing interactions. For J2 ≥ 0,
the second range interaction, governed by J2, favors the
ferromagnetic phase, and its balance with the strength and
sign of J1 determines the ferromagnetic or antiferromagnetic
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ordering similar to the nearest neighbor coupling. When
J2 becomes negative, it strengthens an antiferromagnetic
coupling between second range spin now depending on the
sign of J1, this ordering competes with the first range coupling
in two different ways, which will always be at odds with J2.
For certain values of J1 and J2, the solution to this balance is
the period 4 antiferromagnetic ordering.

When the applied field is different from zero, as shown in
the Effective Complexity Measure plot 3 below, as a function
of J1/B and J2/B, four orderings of periodicity 1, 2, 3, and 4,
identified as the ordered sequences:

(1) ↑↑↑↑↑↑↑↑ · · ·

(2) ↑↓↑↓↑↓↑↓ · · ·

(3) ↑↑↓↑↑↓↑↑ · · ·

(4) ↑↑↓↓↑↑↓↓ · · ·

1
1

1

1
1

1

1.2

1.4

1.6

1.8

1.0

0

1.2

1.4

1.6

1.8

1.0

0

Figure 3. 1/2 next nearest neighbors spin chain. Effective measure complexity
(E) at the ground state (β → ∞) for zero field (B = 0) and non-zero field
(B , 0). Four possible orderings are found ↑↑↑↑↑↑↑↑ · · · , ↑↓↑↓↑↓↑↓ · · · ,
↑↑↓↑↑↓↑↑ · · · and ↑↑↓↓↑↑↓↓ · · · . The third configuration is only possible at
B , 0.

This has been reported before [20]. The new phase ↑↑↓↑↑↓↑↑
· · · appears as a wedge in the phase diagram when B is
zero, and it is the result of the new competing factor when

the applied field favors one sense in space. The applied
field has an effect equivalent to a dipolar average field
pointing, in this case, in the up direction, therefore implying a
flip of a spin to the upper direction that would otherwise
have an antiferromagnetic coupling. This phase, therefore,
appears between the simple antiferromagnetic phase and the
periodicity 4 antiferromagnetic phase.

VI. CONCLUSION

In this article, we aimed to develop the mathematical
treatment of minimal deterministic automata to fully model
one-dimensional Ising models, going beyond previous
approaches. The deduced expressions can be used to
model specific instances of the interaction Hamiltonian.
Furthermore, the detailed deduction can be a route map to
similar deductions for other common statistical mechanics
models, such as Pott or Heisenberg.
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The physics of disordered systems is a broad and constantly
evolving field. In this work we focus on the study of discrete
variable models with asymmetric interactions, in particular
the fully-asymmetric ferromagnet and the fully-asymmetric
Sherrington-Kirkpatrick. We use the cavity master equation, a
well-known technique for the out-of-equilibrium dynamics, to derive
average equations describing the time evolution of the magnetization
and the energy in these models. In this way, we recovered previous
results for the magnetization known from the literature and obtained
new equations for the energy. With this work, we contribute to
establish the cavity master equation as one of the most relevant
techniques in the study of out-of-equilibrium systems and clarify its
relationship with previous methods.

La fı́sica de los sistemas desordenados es un campo amplio y en
constante evolución. En este trabajo, nos centramos en el estudio
de modelos de variables discretas con interacciones asimétricas,
especı́ficamente el modelo ferromagnético completamente
asimétrico y el modelo Sherrington-Kirkpatrick completamente
asimétrico. Utilizamos la ecuación maestra de cavidad, una técnica
conocida para describir la dinámica fuera del equilibrio, para derivar
ecuaciones promedio que describen la evolución temporal de
la magnetización y la energı́a. De esta manera, recuperamos
los resultados previos de la literatura sobre la magnetización y
obtuvimos nuevas ecuaciones para la energı́a de estos modelos.
Con este trabajo, contribuimos a asentar la ecuación maestra de
cavidad como una de las técnicas más relevantes en el estudio de
sistemas fuera de equilibrio y esclarecemos su relación con métodos
previos.

Keywords: Cavity Master Equation (Ecuación maestra de cavidad), Discrete Variable Models (Modelos de variables discretas), Dynamic
Cavity Method (Método de cavidad dinámico), Asymmetric Interactions (Interacciones asimétricas).

I. INTRODUCTION

The dynamic cavity method is a powerful tool in statistical
physics and complex systems theory. It is used to derive
both average equations and specific equations for individual
graphs describing the macroscopic behavior of systems with
many interactions. This method has proven to be particularly
useful in the study of disordered systems [1–5]. Some methods
that preced and influenced the dynamic cavity method are:
the static-cavity method [6], the replica method [7], the
dynamic mean-field theory (i.e. IBMF and PBMF) [8–10] and
message-passing algorithms [11].

In this work we explore the application of the dynamic cavity
method to obtain average equations in two specific models:
fully-asymmetric ferromagnet [8] and the fully-asymmetric
Sherrington-Kirkpatrick [12]. Specifically, in the dynamic
cavity method, we use the cavity master equation (CME), first
presented in [1]. These two models selected by us share two
relevant qualities that make them more attractive. First, the
asymmetry in the interactions allows us to propose suitable
factorizations for the system’s joint probability distribution,
obtaining closed forms for the average equations. Second, we
found previous analytic results in the literature in both cases
[8, 9], which is a rare resource when studying the dynamics
of disordered systems. Indeed, we insert this work in a field
where few advances have been made over the years, and it

is therefore important that we manage to connect a recently
developed technique like the CME with known results.

We recover the equations obtained in [8] for the magnetization
of the fully-asymmetric ferromagnet. In addition, we present
here equations for the time evolution of the energy of the
system not yet published and which were recently introduced
in the Ph.D. thesis of [13]. On the other hand, from the
same CME we re-derive the equations for the magnetization
of the fully-asymmetric Sherrington-Kirkpatrick, already
introduced in [9]. In the latter case, we obtain for the first
time a set of equations for the time evolution of the system’s
energy.

The rest of this paper is organized as follows: first, we
present the theoretical basis and how the cavity master
equation is used in both models. Then, we analyze each model
individually and show how to obtain averaged equations
for the magnetization and energy from the cavity master
equation. Finally, their prediction is compared with the results
of numerical simulations.

II. THEORETICAL BASIS

In its first level of approximation, the cavity master equation
is given as follows [1, 14]:
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dpt(σi | σ j)
dt

= −
∑
σ′i

σiσ
′

i pt(σ′i | σ j)
∑
σ∂i\ j

ri(σ′i , σ j)
∏

k∈∂i\ j

pt(σk | σ
′

i )

(1)

This equation is written for the continuous-time dynamics
of a system with N discrete variables σ⃗ = {σ1, . . . , σN}. The
function ri is the spin transition probability for σi, given the
configuration of its neighbors. The dynamics is sequential or
asynchronous, , that is,, we allow only one variable to change
its value at each time t. In this case, we selected Glauber’s
dynamical rule [15]:

(2)ri(σi, σ j, σ∂i\ j) =
α
2

(1 − σi tanh(β
∑

k∈∂i\ j

Jkiσk + βJ jiσ j))

whereαprovides a dynamical time scale, β is the inverse of the
temperature, and the parameters Ji j are the couplings between
interacting spins.

This was a special choice for running the simulations.
However, they can be performed with any transition
probability ri that depends on the instantaneous values of
the spins of the system. The pair probability equation is a
particular case of the closure developed in Ref. [16]:

dPt(σi, σ j)
dt

= −
∑
σ′i

σiσ
′

i Pt(σ′i , σ j)
∑
σ∂i\ j

ri(σ′i , σ j)
∏

k∈∂i\ j

pt(σk | σ
′

i )

−

∑
σ′j

σ jσ
′

j Pt(σi, σ
′

j)
∑
σ∂ j\i

r j(σ′j, σi)
∏

k∈∂ j\i

pt(σk | σ
′

j)

(3)

Taking a marginal of the Eq. (3) we obtain the individual
probabilities P(σ j):

dPt(σ j)
dt

= −
∑
σ′j

σ jσ
′

j

∑
σi

Pt(σi, σ
′

j) ×

×

∑
σ∂ j\i

r j(σ′j, σi)
∏

k∈∂ j\i

pt(σk | σ
′

j) (4)

The Eq. (4) replaces the equation derived in [1]:

(5)

dPt(σ j)
dt

= −
∑
σ′j

σ jσ
′

j

∑
σi

Pt(σ′j) pt(σi | σ
′

j) ×

×

∑
σ∂ j\i

r j(σ′j, σi)
∏

k∈∂ j\i

pt(σk | σ
′

j)

As can be seen the Eq. (5) has a factor Pt(σ′j) pt(σi | σ′j) while
the Eq. (4) has Pt(σi, σ′j) = Pt(σ′j) Pt(σi | σ′j). This means that
the Eq. (4) can be obtained from the Eq. (5) by replacing
the conditional probability of the cavity pt(σi | σ′j) by the
corresponding conditional probability Pt(σi | σ′j).

III. FULLY-ASYMMETRIC FERROMAGNET

III.1. Magnetization

The key point of the following derivation is that, due to fully
asymmetric interactions (unidirectional influence between
variables), the probability distribution of the local field hi =∑

k∈∂i Jkiσi is independent of the corresponding spin σi. In
models like this, where the sum

∑
k Jki Jik vanishes in the

thermodynamic limit, the Onsaguer reaction term [6] is not
present and the spin σi has no effect on the field hi.

The model couplings are obtained from the distribution:

Q(Jki) =
λ

N − 1
δ(Jki − 1) + (1 −

λ
N − 1

) δ(Jki) (6)

We use this distribution to build the graph of interactions.
For every possible pair (ik) in the system, Jki and Jik are
drawn independently. Therefore, for finite λ and in the
thermodynamic limit, the probability of Jki = Jik = 1 vanishes.
This means that in the Eq. (4), given Jki = 1, we know that
Jik = 0. So, the variables p(σk | σ′j) in Eq. (1) do not really
depend on σ′j.

Using this and applying the operator
∑
σi
σi[·] to the Eq. (4)

yields:

dm j(t)
dt

= −αm j(t) + α
∑
σ′j

∑
σi

P(σi, σ
′

j) ×

×

∑
σ∂ j\i

tanh(β
∑
k∈∂ j

Jkjσk)
∏

k∈∂ j\i

(1 + σkνk

2

)
(7)

where we have made p(σk | σ′j) ≡ p(σk) = 1+σkνk
2 and we have

defined mi(t) ≡
∑
σi
σiP(σi) and νi(t) ≡

∑
σi
σip(σi). Explicitly

doing the summation by σ′j in the Eq. (7) and using P(σi) =
1+σimi

2 we get:

dm j(t)
dt

= −αm j(t) + α
∑
σ∂ j

tanh(β
∑
k∈∂ j

Jkjσk) ×

×

(1 + σimi

2

) ∏
k∈∂ j\i

(1 + σkνk

2

)
(8)

With this, we find the distribution of the local fields h j acting
on site j:

D(h j) =
(1 + σimi

2

) ∏
k∈∂ j\i

(1 + σkνk

2

)
(9)

In fact, we could perform the summation over σ′j because the
distribution D(h j) is independent of σ′j as mentioned above.
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Analogously, we can get an equation for dν
dt :

dν j(t)
dt
= −α ν j(t) + α

∑
σ∂ j

tanh(β
∑
k∈∂ j

Jkjσk) ×

×

(1 + σiνi

2

) ∏
k∈∂ j\i

(1 + σkνk

2

)
(10)

Therefore, if we choose an initial condition such that mi(0) =
νi(0) for all i = 1, ...,N, we have mi(t) = νi(t) for all t > 0. This
allows us to rewrite the Eq. (7) as:

(11)
dm j(t)

dt
= −αm j(t) + α

∑
σ∂ j

tanh(β
∑
k∈∂ j

Jkjσk)
∏
k∈∂ j

(1 + σkmk

2

)
We can average this equation over the graph ensemble given
by the Eq. (6). The result is a special case of a result of Derrida
et al. in [8]:

dm̂(t)
dt
= −α m̂(t) + αe−λ S(m̂, β, λ, 0) (12)

where we define:

S(m̂, β, q, σ) =
∞∑

k=0

qk

k!

k∑
n=0

(
k
n

)(1 + m̂
2

)n
×

×

(1 − m̂
2

)k−n
tanh(β(2n − k + σ)) (13)

Now we will try to simplify this equation. Exchanging the
sums and making the change of variables l = k − n, then
n′ = n− l and substituting the modified Bessel function of first
order:

S(m̂, β, q, σ) =
∞∑

n′=−∞

tanh(β(n′ + σ))
(1 + m̂
1 − m̂

)n′/2
In′ (q

√

1 − m̂2)

(14)

This shows that the probability of having a local field ĥ = n,
which does not account for the connectivity of the node is:

D(ĥ=n) =
(1 + m̂
1 − m̂

)n/2
In(λ

√

1 − m̂2) (15)

III.2. Energy

In these out-of-equilibrium models, there is no Hamiltonian
and, therefore, the word energy cannot have the traditional
meaning. However, we used the concept of energy as a
measure of the average intensity of the interactions between
the spins.

If one wants to know how strongly two spins interact,
it becomes necessary to extract information from the pair

probabilities in Eq. (3). As with single-site probabilities, we can
get the equation for average pair probabilities P̂J12,J21 (σ1, σ2) ≡
P̂J1,J2 (σ1, σ2):

dP̂J1,J2 (σ1, σ2)
dt

= −
α
2

∑
σ

(σσ1P̂J1,J2 (σ, σ2) + σσ2P̂J1,J2 (σ1, σ))

+
ασ1

2

[∑
σ

P̂J1,J2 (σ, σ2)
]
e−λ S(m̂, β, λ, J2σ2)

+
ασ2

2

[∑
σ

P̂J1,J2 (σ1, σ)
]
e−λ S(m̂, β, λ, J1σ1)

(16)

Defining the energy as:

(17)
ê(t) = −λ

∫
dJ1dJ2Qc(J1, J2)(J1 + J2) ×

×

∑
σ1,σ2

σ1 σ2 P̂J1,J2 (σ1, σ2)

For this definition of ê(t) to make sense, we average over
pairs (σ1, σ2) that are connected in the graph. In the large
size limit, this means that J1 = 0 and J2 = 1 or J1 = 1 and
J2 = 0. Therefore, we introduce the connected distribution
Qc(J1, J2) = [δ(J1)δ(J2−1)+δ(J2)δ(J1−1)]/2, which in practice is
the joint probability distribution of (J1, J2) conditioned on one
of them being nonzero. Therefore:

(18)ê(t) = −
λ
2

∑
σ1,σ2

σ1 σ2

[
P̂J1=1,J2=0(σ1, σ2) + P̂J1=0,J2=1(σ1, σ2)

]
and we can compute the average system’s energy solving
simultaneously the Eq. (16) and Eq. (12), and then applying
them into Eq. (18). The reader should notice that, when Ji j =
{0, 1}, the energy ê is directly proportional to the correlation ĉ
(more explicitly, ê = −λĉ). However, this definition will be of
use when the couplings Ji j are not binary, as will happen for
the Sherrington-Kirkpatrick model in the next section.

In Fig. 1, we compare the results of the average equations
for λ = 3 with Monte Carlo simulations in graphs consisting
of N = 1000 nodes that were randomly generated using the
distribution in Eq. (6). Our average equations are a good
description for the system’s magnetization and energy for all
times and temperatures that were tested. Both simulations and
average case predictions display the well-known transition
between ferromagnetic and paramagnetic steady states. For
T < 1.8, the magnetization decays to zero in a short time,
while for T > 1.8 the system remains magnetized for all times.
Since our equations for the magnetization recover the exact
result in Ref. [8], we know that all possible discrepancies must
come from the finite size effects in the statistics of Monte Carlo
simulations.

Through the Eq. (12) we have connected the dynamic cavity
method with a known result from a 1987 article [8]. However,
in that article, it was assumed that the system’s size N was
big enough to satisfy λm

≪ N1/2, for a system that gets m
sequential updates from its starting position.
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Figure 1. Comparison between the average equations (continuous lines) and Monte Carlo’s results (dots) in the fully-asymmetric ferromagnet with N = 1000
and λ = 3. All the calculations were done for a system initially fully magnetized in contact with a heat bath at a given temperature T. Dots are the average for
s = 300 different graphs. For each one, n = 10000 Monte Carlo’s histories were averaged.

A common algorithm like Monte Carlo makes typically
O(10N) updates, which being λ ≥ 2 implies that the system’s
size should be big to sustain the former hypothesis.

Our equations do not have such a problem. They have
the advantage of being just the average of single-instance
equations. This means that we could also reproduce the
temporal evolution of a finite system’s magnetization and
energy. It should also be noted that the energy appearing in
Eq. (18) is directly related to the average correlation between
the connected variables.

IV. FULLY-ASYMMETRIC
SHERRINGTON-KIRKPATRICK

The Sherrington-Kirkpatrick model is a theoretical framework
used to describe spin glass systems, introduced in Ref. [12].
It is an Ising model with long-distance interactions where
the couplings between spins can be ferromagnetic or
antiferromagnetic and they are randomly distributed.

The couplings are drawn from this distribution:

Q(Jki) =

√
N

2πJ2 exp { −
N

2J2
(Jki − J0/N)2

} (19)

Unlike the usual Sherrington-Kirkpatrick model, the choice
of Jkl is independent of Jlk. This is the reason for calling
it fully asymmetric Sherrington-Kirkpatrick. Notice that, in
contrast with the fully asymmetric ferromagnet defined over
sparse graphs, the fully-asymmetric Sherrington-Kirkpatrick
is defined over fully connected graphs.

IV.1. Magnetization

The local cavity magnetizations m j(σi) =
∑
σ j
σ jp(σ j | σi) follow

the following equation:

(20)

dm j(σi)
dt

= −αm j(σi) + α
∑
σ′j

p(σ′j|σi)

×

∑
σ∂ j\i

tanh(β
∑
k∈∂ j

Jkjσk)
∏

k∈∂ j\i

p(σk|σ
′

j)

where ∂ j has all the nodes in the system, except for σ j.

Due to the asymmetry of the couplings, the sum
∑

l Jlk Jkl is
of the order O(1/N) and the Onsaguer reaction term is not
present. We can then formally establish that the probabilities
p(σk | σ′j) will not depend on the couplings Jkl, but on Jlk with
l ∈ ∂k.

Averaging Eq. (20) over the disorder:

(21)

dm̂(σ)
dt

= −α m̂(σ) + α
∑
σ′

∫ [ N−2∏
k=1

dJkQ(Jk)
]

×

∫
dJiQ(Ji)p{Jk},Ji (σ

′
|σ)

×

∑
{σk}

tanh(β
∑

k

Jkσk + Jiσ)
∏

k

p̂(σk|σ
′)

where we have explicitly written the dependency of each
p(σ′j | σi) on the system’s couplings. we have defined p̂(σk | σ′j)
as the average over all Jlk from p{Jlk}(σk|σ′j).

As can be seen from Eq. (19) and Eq. (21), the contribution
related to Ji j within the hyperbolic tangent is of order O(1/N).
This means that in the thermodynamic limit we can ignore
the term Jiσ. Also, we can set a starting condition such that
m̂(1) = m̂(−1), then we will have a unique equation for both
and drop the dependency on σ. Then explicitly integrating
over Ji and summing over σ′:

(22)
dm̂
dt
= −α m̂ + α

∫ [ N−2∏
k=1

dJkQ(Jk)
]

×

∑
⟨σk⟩

tanh(β
∑

k

Jkσk)
∏

k

p̂(σk)
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On the other hand, we can similarly obtain an equation for
magnetization defined as M j(t) =

∑
σ j
σ jP j(σ j):

dM̂
dt
= −α M̂ + α

∫ [ N−2∏
k=1

dJkQ(Jk)
]
×

×

∑
σk

tanh(β
∑

k

Jkσk)
∏

k

p̂(σk) (23)

If we set a starting condition such that m̂(0) = M̂(0), we will
have m̂(t) = M̂(t) for all t > 0, and just one equation:

(24)
dm̂
dt
= −α m̂ + α

∫ [ N−2∏
k=1

dJkQ(Jk)
]
×

×

∑
{σk}

tanh(β
∑

k

Jkσk)
∏

k

p̂(σk)

Then, we need to compute the Gaussian integral in the second
term on the right side:

(25)I(m̂, β, J0, J, η) =
∫ [ N−2∏

k=1

dJkQ(Jk)
]
×

×

∑
{σk}

tanh [β(
∑

k

Jkσk + η)]
∏

k

p̂(σk)

As all variables Jk follow a Gaussian distribution, the variable
ζ =

∑
k Jkσk will also follow a Gaussian distribution. Then

defining Dy ≡ e−y2/2/
√

2πwhere y = (ζ − ⟨ζ⟩)/J2 we get:

I(m̂, β, J0, J, η) =
∫

Dy
∑
{σk}

[∏
k

p̂(σk)
]

tanh [β(
J0

N

∑
k

σk+ J y+η)]

(26)

For N ≫ 1, the variable h = 1
N

∑
k σk is a sum of a great number

of independent and identically distributed variables, also
distributed as a Gaussian. Therefore, at the thermodynamic
limit we get I(m̂, β, J0, J, η):

I(m̂, β, J0, J, η) =
∫

Dy tanh [β(J0 m̂ + J y + η)] (27)

The equation for system’s magnetization is then:

dm̂
dt
= −α m̂ + αI(m̂, β, J0, J, 0) (28)

which reproduces the analytical results presented in [9].

IV.2. Energy

We will also obtain an equation for the energy of the system
as we did in Eq. (17):

ê(t) = −
N
2

∫
dJ1dJ2Q(J1, J2)

(J1 + J2)
2

×

∑
σ1,σ2

σ1 σ2 P̂J1,J2 (σ1, σ2)

(29)

As last time, this is not the usual energy; it is more like a
measure of the intensity of spin interactions. Starting from an
analogous equation to Eq. (16):

(30)

dP̂J1,J2 (σ1, σ2)
dt

= −
α
2

∑
σ

(σσ1P̂J1,J2 (σ, σ2) + σσ2P̂J1,J2 (σ1, σ))

+
ασ1

2

[∑
σ

P̂J1,J2 (σ, σ2)
]

I(m̂, β, J0, J, J2σ2)

+
ασ2

2

[∑
σ

P̂J1,J2 (σ1, σ)
]

I(m̂, β, J0, J, J1σ1)

We can then apply the operator:
−N/2

∫
dJ1dJ2Q(J1, J2)(J1 + J2)/2

∑
σ1

∑
σ2
σ1σ2[·] and get:

(31)

dê(t)
dt
= −2αê(t) −

αN
2

∑
σ

σ
[ ∫

dJ1Q(J1) J1 P̂J1 (σ)
]

×

∫
dJ2Q(J2)I(m̂, β, J0, J, J2σ)

−
αN

2

∑
σ

σ
[ ∫

dJ1Q(J1) P̂J1 (σ)
]

×

∫
dJ2Q(J2) J2 I(m̂, β, J0, J, J2σ)

We know that in the thermodynamic limit:

∫
dJ2Q(J2)I(m̂, β, J0, J, J2σ) = I(m̂, β, J0, J, 0) (32)
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Figure 2. Comparison between average equations (continuous lines) and Monte Carlo’s results (dots) in the fully-asymmetric Sherrington-Kirkpatrick. All
calculations were done for an initially fully magnetized system in contact with a heat bath at a given temperature T. For each one graph, n = 100 Monte
Carlo’s histories were averaged. Panels (a) and (b): System size is N = 500. Points are averages taken over s = 100 graphs. Panels (c) and (d): System size
is N = 100. Points are averages taken over s = 1000 graphs.

This leaves us with the task of solving the following integrals:

(33)N⟨J1m̂J1⟩ ≡N
∫

dJ1Q(J1) J1 P̂J1 (σ)

N⟨J2 I(J2σ)⟩ ≡N
∫

dJ2Q(J2) J2 I(m̂, β, J0, J, J2σ)

where m̂J1 =
∑
σ σP̂J1 (σ).

In all of the following derivations, we will use the fact that
the integrals are uniformly convergent. Now let’s integrate
Eq. (33) by parts with:

u =
∫

Dy tanh
[
β(J0m̂ + Jy + J2σ)

]
(34)

dv = dJ2

√
N

2πJ2 exp
{
−

N
2J2 (J2 −

J0

N
)2
}

J2 (35)

Then, we have:

N⟨J2 I(J2σ)⟩ = N(uv
∣∣∣∞
−∞
−

∫
∞

−∞

vdu) (36)

Using lı́mx→±∞ erf(x) = lı́mx→±∞ tanh(x) = ±1:

uv
∣∣∣∞
−∞
=

J0σ

2N

∫
Dy −

J0σ

2N

∫
Dy = 0 (37)

In the other side:

(38)
∫
∞

−∞

vdu = I1 + I2

where we have:

(39a)I1 = βσ

∫
∞

−∞

dJ2

(
−

J2

N

√
N

2πJ2 exp
{
−

N
2J2 (J2 −

J0

N
)2

})
×

∫
Dy cosh−2 [

β(J0m̂ + Jy + J2σ)
]

(39b)I2 = βσ

∫
∞

−∞

dJ2
J0

2N
erf

[√
N

2J2 (J2 −
J0

N
)
]

×

∫
Dy cosh−2 [

β(J0m̂ + Jy + J2σ)
]

At Eq. (39a) we have the factor exp
{
−

N
2J2 (J2 −

J0
N )2

}
, which

when N is big, the gaussian will be localized around J2 =
J0
N .

Therefore is safe to make the substitution J2 =
J0
N inside the

hyperbolic cosine and then integrating over J2:
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(40)I1 ≈ −
βσJ2

N

∫
Dy cosh−2

[
β(J0m̂ + Jy +

J0

N
σ)

]

At Eq. (39b), we have the factor erf
[√

N
2J2 (J2 −

J0
N )

]
. When N is

big enough, erf
[√

N
2J2 (J2 −

J0
N )

]
≈ sgn(J2 −

J0
N ).

Then exchanging the integral signs and integrating:

(41)I2 ≈ −
J0

N

∫
Dy tanh

[
β(J0m̂ + Jy +

J0

N
σ)

]
Putting it all together and ignoring the J0

Nσ inside
the hyperbolic functions because they vanish in the
thermodynamic limit, we get finally:

(42)N⟨J2 I(J2σ)⟩ = J0

∫
Dy tanh

[
β(J0m̂ + Jy)

]
+ βσJ2

∫
Dy cosh−2 [

β(J0m̂ + Jy)
]

To get an equation for N⟨J1m̂J1⟩ we just multiply by J1 the
differential equation for the variable m̂J1 , and then integrating
the result with weight Q(J1):

(43)N
d⟨J1m̂J1⟩

dt
= −αN⟨J1m̂J1⟩ + αJ0

∫
Dy tanh [β(J0 m̂

+ J y)] + αm̂βJ2
∫

Dy cosh−2 [β(J0 m̂ + J y)]

where there was done an integration by parts to analogously
get the second and third terms.

We can solve numerically the system of equations formed by
Eq. (31), Eq. (32), Eq. (42) and Eq. (43) with starting conditions

m̂(0) = m0, ê(0) = −
J0m2

0
2 and N⟨J1m̂J1⟩(0) = J0m0.

In Figs. 2a and 2b, the results from the average equations are
compared with Monte Carlo simulations, for J0 = 1,J = 1 and
N = 500. The system’s magnetization is well described by
our theory, which is to be expected since we again recover
known results from the literature that are exact. In the same
system, our equations predict steady state energies a bit higher
than the ones obtained in the simulations. When J0 = J = 1,
there is no ferromagnetic region and the dynamics always
go to a non-magnetized steady state. This does not mean the
dynamics is trivial, since correlations do emerge when the
temperature is lowered. This mechanism, possibly associated
with a glassy dynamics, is not captured in Fig. 2a, where the
theory is close to the simulations for high temperatures but
fails for low temperatures.

However, we can show that the equations work better in
systems with stronger ferromagnetic interactions. In Figs. 2c

and Figs. 2d, we can see that for J0 = 2,J = 1 and
N = 100, our theory describes adequately the system’s
magnetization and the energy as well. Here, we do have
a ferromagnetic-paramagnetic transition and the emergence
of correlations for low temperatures is due to ferromagnetic
interactions. This is, instead, well captured by our equations.

V. CONCLUSIONS

We developed a method to get average case versions of the
cavity master equation [1] in asymmetric models. The ideas
and the methods can be easily extended to other models.

Our method recovers exact results already known
in the literature for the magnetizations of the
fully-asymmetric ferromagnet and Sherrington-Kirkpatrick
models. Furthermore, we obtain new equations for the energy
of both models that reproduce the simulations in most cases.

For specific parameters our equations predict steady-states
energies a bit higher than those of the simulations in the
fully-asymmetric Sherrington-Kirkpatrick. This is associated
to the emergence of non-trivial correlations in the dynamics
without magnetization, possibly due to the presence of
a glassy dynamics. We plan to analyze the discrepancies
observed in this particular case in the future.
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J. A. Heredia-Kindelána,c, L. D. Fernández-Quintanaa,c, N. Halberstadtb, L. Uranga-Piñab,c, A. Martı́nez-Mesac†
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We perform molecular dynamics simulations of hydrogen molecules
inside fullerene cages, incorporating quantum effects via the
Feynman-Hibbs effective potential method. The distance between
hydrogen atoms in the molecule is kept fixed by using the constraint
dynamics algorithm. We evaluate the energetic properties and the
influence of quantum effects for hydrogen molecules in fullerene
cages of varying size and geometry (Cn, n = 24, 28, 60, 70),
and within a wide range of thermodynamics conditions (i.e., from
T = 130 K to T = 320 K). We compute the temperature dependence
of quantities such as the translational and rotational kinetic energies,
the total energy and the contribution of quantum effects. It is found
that quantum corrections to the total energy are significant even
at room temperature. We discuss the possible influence of these
properties on the hydrogen storage capacity of these materials.

Simulamos la dinámica de moléculas de hidrógeno dentro de
fulerenos en forma de jaula, incorporando los efectos cuánticos
mediante el método del potencial efectivo de Feynman-Hibbs. La
distancia entre los átomos de hidrógeno se mantiene fija utilizando
el método de dinámica molecular con ligaduras. Evaluamos las
propiedades energéticas y la influencia de los efectos cuánticos
de moléculas de hidrógeno en fulerenos de distintos tamaños y
geometrı́as (Cn, n = 24, 28, 60, 70), dentro de un rango amplio de
condiciones termodinámicas (T = 130 K hasta T = 320 K). Se estudió
la dependencia, con respecto a la temperatura, de magnitudes
como las energı́as cinéticas de traslación y de rotación, la energı́a
total y la contribución de los efectos cuánticos. Se determinó
que las correcciones cuánticas a la energı́a son significativas
incluso a temperatura ambiente. Discutimos la posible influencia de
estas propiedades sobre el almacenamiento de hidrógeno en estos
materiales.

Keywords: Molecular dynamics simulations (Simulaciones de dinámica molecular); Semiclassical molecular dynamics (dinámica molecular
semiclásica); Hydrogen storage (almacenamiento de hidrógeno).

I. INTRODUCTION

Today, hydrogen is considered one of the main alternatives
to fossil fuels for mobile applications [1]. Hydrogen is
an environmentally friendly renewable energy carrier with
promising applications in various sectors. For example, efforts
are underway to adopt hydrogen as a fuel in transportation,
stationary and portable back-up power plants, power supply
to off-grid areas, among other usages [2].

Despite its high energy density and environmentally safe
nature, large-scale exploitation of hydrogen as a fuel
constitutes a challenge for modern science, particularly
concerning safe and efficient hydrogen storage for mobile
applications. Various technologies have been developed to
store hydrogen, such as compressed hydrogen gas tanks,
liquefaction, chemically in the form of solid hydrides or by
spillover of hydrogen, or by physical adsorption in porous
materials [2–6]. Currently, none of these methods can meet
the current reference U.S. Department of Energy goals for
efficient on-board hydrogen storage, or they bear high energy
consumption or high material costs [1].

Physisorption on nanostructured surfaces is one of the most
promising alternatives to store hydrogen due to the typically

high energy density attained, the reversibility, and the fast
kinetics [7]. Specifically, hydrogen uptake by carbon-based
nanomaterials provides valuable insight into the microscopic
mechanisms underlying the adsorption process. The wide
variety of thermodynamically stable carbon allotropes enables
several parameters, such as the pore size and the binding
energy, to be tuned almost continuously. Therefore, despite
exhibiting lower storage capacities than more complex
materials (for example, metal-organic and covalent-organic
frameworks), carbonaceous materials remain as widespread
model systems for studying H2 physisorption [8].

While several authors addressed the evaluation of quantum
effects on hydrogen physisorption within the featureless
particle approximation (see [9], and references therein),
studies of rotational quantum dynamics of adsorbed
hydrogen molecules are scarce in the literature [10].

The purpose of this paper is to investigate the quasi-classical
dynamics of hydrogen molecules encapsulated in fullerene
cages of varying sizes, with a focus on the energetics and
the emergence of quantum effects. Fullerenes constitute
paradigmatic examples of curved carbon nanostructures.
They can be regarded as the elementary building blocks
of fullerites, which are appealing as hydrogen storage
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media [11]. In Section Methodology, we describe the
computational approach to effective potential molecular
dynamics simulations of H2 molecules inside fullerene cages.
The computed energetic properties of endohedral H2@Cn
molecules are presented in section Results and discussion. The
main findings and some perspectives are summarized in
section Conclusions.

II. METHODOLOGY

Within the constraint dynamics method [12], the positions of
the hydrogen atoms obey the following equations of motion:

m ¨⃗ri = f⃗i + γ⃗i j(t), (1)

where r⃗i (i = 1, 2) is the position of the hydrogen atom ith,
f⃗i is the force exerted on each H atom by the fullerene cage
and m is the hydrogen atomic mass. The symbols γ⃗i j (i , j)
denote intramolecular constraint forces introduced to keep
the distance between hydrogen atoms constant, that is, at each
point in time:

|⃗r12(t + ∆t)|2 = |⃗r21(t + ∆t)|2 = l2. (2)

Here, ∆t = 1 fs is the time step, l = 0.74 Å is the equilibrium
bond distance in the hydrogen molecule.

The positions r⃗i and velocities v⃗i are propagated as follows:

r⃗i(t + ∆t) = r⃗i(t) + v⃗i(t)∆t +
1
2

a⃗i(t)∆t2, (3)

v⃗i(t + ∆t) = αv⃗i(t) +
1
2
[
a⃗i(t) + a⃗i(t + ∆t)

]
∆t, (4)

where a⃗i(t) = −∇iV(⃗r)/m is the instantaneous acceleration of
the ith particle. The vector r⃗ = (⃗r1, r⃗2) represents the positions
of the two hydrogen atoms.

Equations (3) and (4) correspond to the velocity Verlet
algorithm [12], augmented by introducing the velocity
rescaling factor:

α =

√
Kt

K
, (5)

which enforces the canonical distribution of the total kinetic
energy of the system. The target value Kt of the kinetic
energy is drawn randomly from the canonical equilibrium
distribution for the kinetic energy [13]:

P̄(Kt)dKt ∝ KN f /2−1
T e−βKt dKt. (6)

N f is the total number of degrees of freedom in the system.

The interaction potential V between the hydrogen molecule
and the (frozen) host structure is modeled as a superposition
of pairwise interactions of the form:

V(⃗r) =
∑
i,ν

Ae−a|⃗ri−r⃗ν| −
C∣∣∣⃗ri − r⃗ν
∣∣∣6
 , (7)

where A, a, and C are constant parameters fitted to ab initio
data: A = 12676 kcal·mol−1, a = 3.5763Å−1, C = 200.185
kcal·mol−1Å6 [14]. r⃗ν is the position of each carbon atom in
the fullerene cage.

The well depth of the C-H pair potential in equation (7) is 6.3 ·
10−2 kcal·mol−1, and the minimum is attained at an interatomic
separation of 3.4 Å. Comparatively, the equilibrium C-H
distance is 1.46, 1.28, 0.97, and 0.89 times larger than the
cage radii of C24, C28, C60, and C70 fullerenes, respectively
[15]. Therefore, we can expect guest molecules to be tightly
confined by repulsive forces at the centre of the C24 and
C28 cages, while the two larger fullerenes display interaction
potential minima at the centre of the cavity (for C60), and
slightly displaced from the centre (for C70).

As a result of the mismatch between the frequency of the host
phonons and the characteristic time scale of the guest molecule
motion, the influence of the vibrations of carbon atoms on the
computed thermodynamic properties is negligible (within the
investigated temperature range). A similar result has been
verified for hydrogen storage in carbonaceous nanomaterials,
e.g., using frozen phonon models [25]. Therefore, the results
reported in following section were obtained assuming a frozen
host structure.

In order to account for quantum effects at finite temperature
within a molecular dynamics framework, we consider atoms
moving on the Feynman-Hibbs effective potential:

VFH (⃗r) = V(⃗r) +
βℏ2

24m

∑
i

∇
2
i V(⃗r). (8)

In equation (8),∇2
i is the Laplacian operator with respect to the

coordinates of particle i, β = 1
kBT is the inverse temperature, kB

is the Boltzmann constant, and ℏ is the Planck’s constant.

The Feynman-Hibbs effective potential has been extensively
used to incorporate moderate quantum effects [23, 24]. The
second, temperature-dependent term in equation (8) accounts
for the effects of quantum delocalization, i.e., it corresponds to
the path integral average of position-dependent observables
around the classical path, over a region of size equal to the De
Broglie thermal wavelength

√
2πβℏ2/m.

For each fullerene cage and for every temperature T, the
simulation procedure can be summarized as follows. A
hydrogen molecule with random orientation is initially
placed inside the carbon framework. The initial position
of the molecular centre of mass is assigned randomly
around the center of the cage, following a three-dimensional
Gaussian distribution of standard deviation equivalent to
40 % of the cage radius. Initial velocities of the centre
of mass along each Cartesian axis are drawn from
the corresponding Maxwell-Boltzmann distribution. Upon
thermalization, properties are calculated as averages over
trajectories starting from 40 different initial conditions. In turn,
each trajectory is propagated for 150,000 simulation steps.

Furthermore, we examine the validity of a simple model
of H2@C60 and H2@C70 endohedral molecules, consisting of
decoupled rotational and centre of mass translational motions.
To this purpose, the computed average total energies of H2 in
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C60 and C70 fullerene cages were fitted to the superposition
of the internal energies of a three-dimensional isotropic
harmonic oscillator (of mass equal to 2m, its frequency ω is
considered as a fitting parameter):

3
2
ℏω +

3
2
ℏω e−βℏω

1 − e−βℏω
, (9)

and of a free rigid rotor (with rotational constant Be) [22]:

−
∂
∂β

34 ln

∑
l even

(2l + 1)e−βBel(l+1)


+

1
4

ln

∑
l odd

(2l + 1)e−βBel(l+1)


 .

(10)

In practice, the sums in equation (10) were approximated with
the first three non-zero terms.

III. RESULTS AND DISCUSSION

In the following, we present the characterization of the
energetics of H2@Cn endohedral fullerenes (n = 24, 28, 60, 70)
in the range of temperatures from 130 K up to 320 K.

For each system, the computed total kinetic energy
(translational plus rotational) is equal to N f /2β, up to
numerical fluctuations. However, due to the emergence of
quantum effects, the kinetic energy is not evenly partitioned
among all degrees of freedom at thermal equilibrium.

Figure 1 illustrates the influence of the confinement potential
on the rotational motion of the guest molecule. It can be
noticed that H2 rotation is subject to larger energy barriers
in the smaller fullerenes. Still, due to the small bond length
of H2, the molecule is able to complete rotations even in the
smallest C24 cage.

On the one hand, the rotational energy of H2 molecules
trapped inside C24 and C28 cages remains rather close and
increases with a slope similar to that predicted by the energy
equipartition principle, at all temperatures. On the other hand,
the rotational energy of hydrogen molecules in C60 and C70
fullerenes is higher than anticipated by the equipartition
theorem. For these two fullerenes, the ⟨Krot⟩(T) curves present
steeper slopes on average, compared both to the energy
equipartition theorem and the smaller C24 and C28 cages. It can
be seen that the average rotational energy of H2 is very similar
in C60 and C70 above 220 K, while the former is somewhat
lower for temperatures between 130 K and 180 K.
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Figure 1. Average rotational kinetic energy ⟨Krot⟩ of hydrogen molecules
encapsulated in C24 (up triangles), C28 (stars), C60 (squares), and C70
(circles), as a function of temperature. The dashed line represents the
temperature dependence of the rotational energy of H2, as predicted by the
energy equipartition theorem.

This behaviour can be rationalised by considering the
differences in the confinement potential exerted on H2
molecules by the host structures. The equilibrium position of
the H2 molecule was at the centre of the cavity in C60, whereas
two symmetrical equilibrium positions were observed near
the centre of the cage in C70, oriented along the major axis.
As a consequence of the nearly spherical symmetry, and the
size of the buckminsterfullerene (the cage radius is 3.53Å)
and C70 (geometrical mean radius of 3.83Å), the encapsulated
hydrogen molecule behaves almost as a free rotor. Featuring
the largest molecular rotational constant in nature (Be/kB =
87.17 K), the energy spacing between low-lying rotational
levels of the free H2 molecule (i.e., 2Be, 4Be, 6Be, ...) are similar
to or larger than kBT within the range of thermodynamic
conditions investigated here.

The discrete character of the rotational spectra of the
encapsulated molecule lies at the origin of the observed
deviations from the energy equipartition principle. Although
the Feynman-Hibbs method can not take the discrete
character of the molecular rotational spectra into account
explicitly, the method has been shown to accurately reproduce
thermodynamic properties (e.g., the free energy) even in
the ultra-quantum limit (i.e., for En+1 − En ≫ kBT, where n
represents a collective quantum number labelling the energy
levels of the system) [17].

For the C24 and C28 cavities, rotational hindering by the
anisotropic hydrogen-cage interaction potential creates a
higher density of rotational states within the thermal and
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subtermal energy regions, and the behaviour predicted by
the energy equipartition theorem is approximately recovered.
It can be seen, that within the investigated temperature range,
the tighter the confinement imposed by the host structure,
the smaller the rotational energy of hydrogen molecules
encapsulated in the cavity.
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Figure 2. Average translational kinetic energy ⟨Ktra⟩ of H2 molecules
encapsulated in fullerene cages (C24, C28, C60, and C70), as a function of
temperature. The dashed line represents the temperature dependence of the
translational energy of H2, as predicted by the energy equipartition theorem.

In figure 2, we show the average translational kinetic energy
⟨Ktra⟩ of hydrogen molecules trapped in the fullerene cages.
Since the total kinetic energy is proportional to temperature,
the temperature dependence of ⟨Ktra⟩ mirrors that of the
average rotational energy. That is, for hydrogen molecules
in C24 and C28, ⟨Ktra⟩(T) increases linearly following a
similar trend to that predicted by the energy equipartition
theorem. Conversely, the temperature-dependent, average
translational kinetic energy of H2 in C60 and C70 is
comparatively smaller and flatter than for the two smallest
fullerenes.

This trend suggests that nanoporous materials displaying
inner cavities with sizes and shapes resembling C60 and
C70 cages would be more suitable as hydrogen storage
media. Indeed, in these nanostructures, a larger fraction
of thermal energy takes the form of rotational rather than
translational energy of H2 molecules. This property translates
in smaller vibrational amplitudes of guest molecules around
their equilibrium positions in the cage. Since the equilibrium
distance of the isotropic average of H2-H2 intermolecular
interaction is 3.4Å [18], both C60- and C70-like pores can
accommodate two H2 molecules, at the expense of somewhat

increased barriers to rotation due to the interaction with pore
walls.

The influence of quantum effects on the energetics of H2@Cn
endohedral molecules can be quantified in terms of the
extent of the temperature-dependent contribution in the
Feynman-Hibbs potential (equation (8)). The plots in figure 3
show that quantum effects are at least one order of magnitude
larger in C24 and C28, compared to C60 and C70, owing to the
tightest confinement imposed by the smaller nanostructures
on the guest molecules.
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Figure 3. Average quantum contribution ⟨QFH⟩ in the effective
Feynman-Hibbs potential for H2@Cn (n = 24, 28, 60, 70), as a function of
temperature.

The magnitude of quantum effects gradually decreases as
temperature gets larger, i.e, at T = 320 K, the average quantum
contribution to the effective potential drops down to 41 % of
its value at T = 130 K, for hydrogen trapped inside C24 and
C28 cages. Within the same interval of temperature, the size
of this contribution declines by 43 % and 50 % for the C60 and
C70 fullerenes respectively.

In figure 4, we show the total energy of encapsulated H2
molecules as a function of temperature. It can be seen that this
quantity behaves quite differently in response to cage size.

In C24 and C28, guest molecules are confined by repulsive
interactions with the cage walls. The hydrogen molecules
trapped in these structure undergo a 7 % reduction of
their total energy when temperature increases from T =
130 K up to 320 K. Such diminution owes chiefly to the
reduction of the temperature-dependent contribution to the
effective Feynmann-Hibbs potential by 60 % (13.4 kcal·mol−1

and 8.3 kcal·mol−1 for H2@C24 and H2@C28, respectively).
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The Feynmann-Hibbs quantum correction gets smaller as
a consequence of the decrease of the De Broglie thermal
wavelength.
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Figure 4. Average total energy ⟨E⟩ of H2 molecules trapped in C24, C28,
C60, and C70 fullerene cages, as a function of temperature. In the bottom
panel, star symbols correspond to the fitting to the sum of internal energies
of a three-dimensional isotropic harmonic oscillator and a free rigid rotor
((equations (9) and (10)).

Notably, quantum effects are non negligible for H2 molecules
in fullerene cages, even at room temperature. Indeed,
quantum corrections amount to 14 % and 16 % of the total
energy at T = 130 K in C24 and C28 cages, respectively, and
their participation reduces down to 6 % and 7 % at T = 320 K.

Inside C60 and C70 fullerenes, hydrogen molecules remain
bound to the cage below room temperature. At T = 130 K,
the average adsorption energy is 1.8 kcal·mol−1 in the
buckminsterfullerene, and 2.3 kcal·mol−1 in C70. The binding
energy monotonously decreases as temperature rises, which
indicates a gradual deterioration of the hydrogen storage
capacities of cage-like fused-ring carbon nanostructures
within this temperature range.

As expected, the quantum correction to the total energy
decrease with temperature. In C60, this contribution reduces
from 0.45 kcal·mol−1 at T = 130 K to 0.18 kcal·mol−1 at
T = 320 K. In C70 fullerenes, it decreases from 0.19 kcal·mol−1

at T = 130 K down to 0.08 kcal·mol−1 at T = 320 K.

The computed total energies ⟨E⟩(T) of the H2@C60 and H2@C70
endohedral molecules are well reproduced by the sum of the
internal energies of a three-dimensional isotropic harmonic
oscillator and a rigid rotor (equations (9) and (10), respectively,
see bottom panel in figure 4). The fitting scheme yields values
ω = 404.2 K and 221.8 K for the energy spacing between

translational energy levels in C60 and C70, respectively. The
deviation between the results of the fitting and previous
experimental and theoretical evaluations of the fundamental
vibrational frequency of H2 centre of mass in these fullerenes
are within 1 % and 15 % [10,19–21]. This level of agreement is
satisfactory, considering that the functional form employed
in the fitting does not account for the anharmonicity and
weak anisotropy of the confining potential, nor the coupling
between orbital and rotational angular momenta, and that the
results of previous experimental and theoretical calculations
show notable variations [20].

IV. CONCLUSIONS

We report quasi-classical simulations of the translational
and rotational dynamics of hydrogen molecules inside four
quasi-spherical fullerene cages, namely C24, C28, C60, and
C70. Energetic properties are computed from 130 K to 320 K,
covering a sizable part of the temperature range of interest for
storage technology applications.

The rise in temperature causes the average rotational
and translational kinetic energies of embedded hydrogen
molecules to increase (roughly) linearly. The energy spacing
between adjacent low-lying rotational levels of the H2
molecule in buckminsterfullerene and in C70 is comparable
to or greater than kBT, which causes deviations from the
energy equipartition principle. Overall, the influence of
quantum delocalization on energetic properties remains
non-negligible over the entire range of thermodynamic
conditions investigated here.

Novel materials featuring highly ordered and randomly
packed assemblies of carbon nanocages have recently been
synthesized and investigated with respect to their potential
applications for energy storage and conversion [16]. The
connection between the energetics of endohedral H2@Cn
molecules, and the hydrogen storage capacities of these
carbon-based nanostructures is as follows.

In these materials, efficient hydrogen uptake can only be
achieved if there are enough large pores. For these fullerenes,
the H2-surface interaction prevents adsorption. As it happens,
the tight confinement imposed on the H2 molecules by the
smaller host structures (C24, C28) triggers marked quantum
delocalization effects.

Nanocavities resembling C60 and C70 appear to be suitable
hydrogen storage media, since hydrogen molecules remain
bound to the cage for temperatures up to room temperature.
The hydrogen storage capacities of C60- and C70-like
nanocages will result from a trade-off between the higher
binding energy of hydrogen to the host structure, and the
possibility to accommodate more than one guest molecule
per pore, owing to the smaller vibrational amplitude of H2
translational motion in the cage.

Based on the present results, we plan in the future to extend
the methodology to model hydrogen uptake by more complex
nanomaterials (e.g., assemblies of carbon nanocages, metal-
and covalent-organic frameworks) in the high-density regime
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(i.e., by including several interacting H2 molecules). In this
perspective, the motion of host atoms may become relevant
for more flexible nanoporous materials. Within the present
approach, the inclusion of vibrations of host structure is
straightforward. Work along this line is underway.
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Turro, J. Am. Chem. Soc. 132 (2010).

[22] M. Capitelli, G. Colonna, and A. D’Angola, Fundamental
Aspects of Plasma Chemical Physics: Thermodynamics
(Springer Science, 2012).

[23] R. Rodrı́guez-Cantano, R. Pérez de Tudela, M.
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The prototype of the Target Station for Long-Term Exposure
was assembled after all detectors of BM@N Experiment. During
collection of the physical data with the 124Xe54 beam of 3.8 GeV
kinetic energy at BM@N, different samples were irradiated. Data
was analyzed for precise determination of the intensity, the fluence
and the absorbed dose for irradiated materials. The beam intensity
and profile distributions were determined for each sample. From the
obtained intensity, the fluence was calculated for each irradiated
sample. Then, the absorbed dose of irradiated materials was
be calculated. The study was performed within the ARIADNA
Collaboration.

El prototipo de la Estación de Objetivos para Exposición a Largo
Plazo fue desplegado al final de la lı́nea de detectores del
experimento BM@N. Fueron irradiadas diferentes muestras en el
BM@N durante la recopilación fı́sica de datos con el haz de iones de
124Xe54,de energı́a cinética de 3.8 GeV. Los datos fueron analizados
para la determinación precisa de la intensidad, para la estimación
de la fluencia y la dosis absorbida de los materiales irradiados.
Para cada muestra fueron determinados la intensidad y el perfil del
haz. La fluencia fue calculada a partir de la intensidad obtenida
para cada muestra. Luego, se calcula la dosis absorbida por los
materiales irradiados. Este estudio es llevado a cabo como parte
de la Colaboración ARIADNA.

Keywords: fluence (fluencia), absorbed dose (dosis absorbida), high energy ion beam (haz de iones de alta energı́a ), irradiated samples
(muestras irradiadas).

I. INTRODUCTION

The Nuclotron-based Ion Collider fAcility (NICA) is an
accelerator complex that is under construction at the Joint
Institute for Nuclear Research in Dubna, Russian Federation.
The main purpose of NICA is to study the properties of dense
baryonic matter [1]. BM@N (Baryonic Matter at Nuclotron)
is the first experiment undertaken at the NICA-Nuclotron
accelerator complex. Its goal is the study of heavy-ion beams
interactions with fixed targets. The beam, extracted from
the Nuclotron, is transported to the BM@N experimental
installation. Only a 2 % of the beam interacts with the target,
and it was decided to use it for applied research. Recently,
after the Forward Hadron Calorimeter [2], a new Station for
Long-Term Exposure (SLTE) was assembled, which is after all
detectors of the BM@N experiment. This station is devoted
to the irradiation of samples for applied research. The rest of
the beam at the LTE station, in parallel with the operation of
the BM@N set-up [3], is used for applied studies of samples
of different geometry and chemical composition. Previously,
some analyzes were carried out in order to determine the
radiation intensity and the profile of the irradiated samples,
based on the information from each of the detectors associated
with the BM@N experiment [3]. This study was necessary
because the samples would be set after the BM@N detector
array. Finally, the integral intensity or the total number of ions
passing through the samples was estimated [3].

II. MATERIALS AND METHODS.

II.1. Experimental Data Collection.

In order to estimate the fluence, it is necessary to measure
the beam intensity and to determine the physical parameters
of each detector located in the beam line. During the Xe
beam run [3], Veto Counter (VC) registered a 80 % of the
beam. In order to minimize the interactions upstream of the
target, the scintillators and active parts of the Si detectors were
located in vacuum, while the photomultiplier tubes (PMTs) of
the scintillation counters and the front-end electronics of the
silicon detectors were kept in air, with their housings mounted
on the flanges of the beam pipe. In order to reject the beam
halo, the beam aperture was limited by the 25 mm diameter
hole in the scintillation counter (VC). Independently, the beam
ions or expected fragments can be detected by a 4 mm thick
quartz hodoscope (FQH), located in front of the beam hole.
Information from the hodoscope is used in outline analysis
for event selection and determination of event centrality.

II.2. Computer Analysis.

All data were written on an e-Log platform from the number of
runs for each corresponding data. Initially, data are written in
binary format, and then digitized to Root format. Information
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about the bean profile is written as DST.exp files for each run.
By analyzing these files, a miniDST file is created to keep all
necessary information [4]. BmnRoot software [3] was used for
the information processing.

II.3. Dosimetrical Analysis.

The absorbed dose (D) is a measure of the effect caused by
radiation on materials. It is relevant to all types of ionizing
radiation fields (directly or indirectly), as well as to any
ionizing radiation source distributed within the absorbing
medium. It is defined as:

D =
dε
dm

(1)

where, dε is the expected energy value of a particle impacted
by finite volume V, and dm is the mass differential [5].

The fluence of particles (ϕ), in dosimetric studies, is a measure
of the number of ionizing particles that arrive at the detector
surface in a given time. It is defined as:

ϕ =
dN
dA

(2)

where, N is the number of particles (nucleons) that arrive at
the area, and A is the surface area (cm2). It is an important
parameter, because it is used to estimate the absorbed dose.
Therefore, the unit of measurement for fluence is the particles
per square centimeter [5].

For charged particles, it is possible to obtain the absorbed
dose value from the fluence, if the target thickness is a few
percent or less of the range. Then, the energy lost in collision
interactions for a fluenceϕ (charged particles ·cm−2) of energy
will be:

E = ϕ
(

dT
ρdx

)
ρx (3)

where, dT/ρdx is the collision stopping power of the foil mass,
and the density thickness (ρt), is the length of the particle path
through the foil. Hence, the absorbed dose in the foil can be
estimated as

D = ϕ

(
dT
ρdx

)
ρx

ρx
= ϕ

(
dT
ρdx

)
(4)

where, the foil thickness ρx must be canceled, leaving the dose
as a product of fluence and mass collision stopping power.
This cancellation is very important, taking into account that
the dose in the foil, does not depend at the thickness [5].

II.4. Irradiated samples.

Before the experiment, scientific and methodological tasks
were selected to establish the main parameters of the beam
and irradiation schemes for each type of sample [6].

Different tasks were related to the study of protective
properties, radiation resistance, and radio modification of
composite materials for the space industry, developed and
produced at V. G. Shukhov Belgorod State Technological
University (BSTU) [6]. It is also of interest in some research
related to support, for spacecraft crews, in the study of
the effect induced by heavy ions on seed germination and
plant development features. In that sense, the structural
modification and state of matter as a result of the action
of accelerated ion beams on artificial sapphires (Al2O3) is
studied.

Furthermore, radiation damage of thin polymer films (up to
100 µm thick) films, based in polytetrafluoroethylene (PTFE)
and thermo-radiationally modified PTFE, polyethylene
terephthalate, polyimides, and the irradiation of
high-temperature superconducting tapes (1st and 2nd
generation), produced by JSC “S-Innovations” (Moscow) [6],
was also studied during the experiment.

The program also includes the study of the effects induced by
the irradiation of targets of some metals, and measurement of
the induced activity. In particular, the isotopes 7Be, 22Na and
24Na, in the spectra of the aluminum-irradiated targets [6].

III. RESULTS AND DISCUSSION

III.1. Fluence estimation.

To determine the fluence, it is necessary to know the
dimensions of the incident beam and the irradiated sample,
as well as the coordinates where the sample is located. To
achieve it, it was assumed that the sample was located just
in the center of the ion beam and also that nucleons, in the
beam, are distributed homogeneously. The geometry of the
beam sample is presented in Figure 1.

Figure 1. Bean-sample geometry. Top panel: geometric representation of
the ion beam, including the dimensions of the surface radius a and b.
Bottom panel: location of the sample, respect to the beam, its geometric
representation and area [7]).

The shape of the beam has been approximated as an ellipse,
whose radii a and b have values of 2 cm and 1.5 cm,
respectively. The ellipse area represents the surface of the
beam. It was calculated as follows:

A = π · a · b (5)

resulting in a value of 9.4248 cm2, and the sample has a
squared shape with an area of 1 cm2. The beam intensity was
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obtained by reading the results ejected by the FQH detector
at the end of the beam line [6]. This value represents the total
number of nucleons transported by it [6].

To determine the number of nucleons affected in the sample,
we divided the total number of nucleons by the area of the
ellipse. That shows how many nucleons are found in a unit
of area, and then this result must be multiplied by the area
defined by the sample. This value represents the fluence of the
particles in the area of interest (da), introduced in the equation
(2). The approximate value of the deposited energy was also
estimated, knowing that the 124Xe54 beam has an energy of
3.8 GeV · nucleon−1. This energy is multiplied by the number
of incident nucleons on the sample area (ϕ). Finally, the total
number of measured nucleons and the fluence calculated for
each sample are shown in Table 1.

Table 1. Measured intensity, fluence (nucleons·cm−2), and energy distribution
(GeV · cm−2) for each of the samples. [7]

Samples Intensity Fluence Energy distribution

Seed I 2.42622e+08 6.4e+06 2.43e+07

Seed II 2.47850e+08 6.6e+06 2.51e+07

Seed III 3.46815e+08 9.2e+06 3.50e+07

Seed IV 2.24907e+08 6.6e+06 6.6e+06

Sapphire
+ Films + Al 5.79354e+09 1.5e+08 5.7e+08

Add composite
ROCC + VTSP(1) 4.86455e+09 1.3e+08 4.94e+08

Add composite
MCS + VTSP(2) 2.39928e+09 6.4e+07 2.43e+08

III.2. Uncertainty sources.

The first source of uncertainty comes from the fact that,
between the sample and the FHQ hodoscope, there is a
distance of 2 meters in air [3]. Therefore, when the ion
beam crosses that distance, traveling from one point to
another, it is possible that there are interactions, deviations,
and/or energy loss that were not measured. The last causes
the 100 % of the real intensity of the radiation to not
be recorded. The second source of uncertainty is that we
have considered that the nucleons throughout the beam are
distributed homogeneously [8], in an elliptical geometry. This
is an approximation, since, in reality, the nucleons tend to
concentrate at the center of the beam, as shown in Figure 2.

Figure 2. Gaussian intensity distribution and sample position [7]

IV. CONCLUSION

The particle fluence of the analysis of beam data that was
taken during physical data collection with the 124Xe beam
of the 3.8 A GeV kinetic energy at the BM@N installation
in the 8th Commissioning Run of the NICA Complex was
calculated. This is the first experiment of irradiation of
different samples for applied research in the LTE Station
with high energy ions. The uncertainties of the results were
analyzed to improve the precision of the calculations. Further
studies are in progress to compare the parameters obtained
by Monte Carlo simulations.
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The metal–insulator transition (MIT) is a fundamental phenomenon
in condensed matter physics and a hallmark of strong electronic
correlations. Hydrogen-based systems offer a simple yet powerful
model for investigating the MIT, as their insulating behavior
arises purely from electron–electron interactions. In this work, we
study finite hydrogen clusters with cubic geometries using Natural
Orbital Functional Theory (NOFT), a method capable of accurately
describing correlated systems beyond mean-field approaches. We
focus on two key signatures of the MIT: the fundamental energy gap
and the harmonic average of the atomic one-particle reduced density
matrix. Our results show that NOFT captures the transition from
insulating to metallic behavior as the interatomic distance decreases.
By extrapolating the energy gap to the thermodynamic limit, we
estimate a critical distance rc ≈ 1, 2Å, in excellent agreement with
quantum Monte Carlo benchmarks. These findings demonstrate
the reliability of NOFT for describing strong correlation effects in
large-scale models.

La transición metal–aislante (TMA) es un fenómeno fundamental en
fı́sica de la materia condensada y una manifestación caracterı́stica
de las correlaciones electrónicas fuertes. Los sistemas basados en
hidrógeno constituyen un modelo simple pero eficaz para estudiar la
TMA, ya que su comportamiento aislante se debe exclusivamente
a interacciones electrón–electrón. En este trabajo, investigamos
cúmulos finitos de hidrógeno con geometrı́a cúbica mediante la
Teorı́a del Funcional de Orbitales Naturales (TFON), un método
capaz de describir con precisión sistemas correlacionados más
allá del campo medio. Nos centramos en dos indicadores clave
de la TMA: la brecha de energı́a fundamental y el promedio
armónico de la matriz densidad uniparticular atómica. Nuestros
resultados muestran que la TFON reproduce con éxito la transición
del estado aislante al metálico al disminuir la distancia interatómica.
Al extrapolar la brecha al lı́mite termodinámico, estimamos una
distancia crı́tica rc ≈ 1, 2Å, en excelente concordancia con estudios
de Monte Carlo cuántico.

Keywords: Metal–Insulator Transition (transición metal-aislante); Strongly Correlated Electrons (electrones fuertemente corrlecionados); 
Reduced Density Matrix (matriz de densidad reducida); Functional Theory (teorı́a funcional); Natural Orbitals (orbitales naturales).

I. INTRODUCTION

The metal–insulator transition (MIT) [1] is a central concept in
condensed matter physics and one of the most compelling
manifestations of electron correlation effects in solids. In
these transitions, materials change their electronic phase from
conducting to insulating or vice versa under the influence of
external parameters such as temperature, pressure, doping
level, or lattice strain. While the transition may appear
continuous or abrupt depending on the system, it generally
reflects a subtle interplay between electron localization and
delocalization. These phenomena are not only of fundamental
theoretical interest but also of increasing technological
relevance due to their potential integration into future
microelectronic, sensing, and switching devices [2]. Materials
exhibiting MIT behavior are therefore highly valued in
the search for controllable, multifunctional components for
next-generation electronics [3, 4].

A historically significant and conceptually rich subclass of
MIT materials are Mott insulators, whose study began in
1937 [5] during a conference chaired by Sir Nevill Mott.
At the time, transition-metal oxides such as NiO, MnO,
and Fe2O3 were observed to behave as insulators despite
having partially filled 3d electronic bands, which, according to

conventional band theory, should result in metallic behavior.
Building on the insights of de Boer, Verwey, and Peierls,
Mott argued that this insulating behavior was caused by
strong onsite Coulomb repulsion, which localized electrons
and suppressed conduction even in the absence of a filled
band. This challenged the established Bloch-Wilson picture
and gave rise to the concept of the Mott transition, where
electron–electron interactions, rather than band filling, govern
the electronic phase of the system [6].

Contemporary research continues to explore MITs across
a wide range of materials and dimensionalities [7, 8]. In
particular, two-dimensional crystals with specific lattice
geometries have recently demonstrated that even moderate
interactions can induce Mott insulating behavior [9]. These
findings highlight the universality of the MIT in systems
with diverse chemical compositions, dimensionalities, and
electronic structures. They also underscore the need for
accurate theoretical models capable of capturing the essential
physics of strong correlation. In this context, idealized systems
composed of hydrogen atoms under extreme conditions offer
a unique platform to isolate and study the fundamental
ingredients that govern MIT phenomena [10–12].

Among idealized systems, a simple lattice of hydrogen
atoms offers a particularly clear framework for illustrating
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the essential mechanism of a Mott transition in its most
fundamental form [13–15]. At large interatomic distances,
each hydrogen atom behaves as an isolated unit, with one
electron localized at each site. Exciting the system into a
conducting state requires transferring an electron from its
original site to a distant one, which is energetically penalized
by the difference between the ionization potential and the
electron affinity, known as the fundamental energy gap. This
difference defines an effective Coulomb repulsion energy,
usually denoted as U. As the lattice spacing decreases,
the overlap between electronic wavefunctions increases,
broadening the energy levels by a bandwidth W. The system
becomes metallic when the kinetic energy gain associated
with delocalization overcomes the Coulomb repulsion, which
leads to a critical transition governed by the ratio U to
W. This framework is now a cornerstone in the theoretical
understanding of many-body systems that display correlated
insulating and metallic phases.

While the hydrogen lattice provides an idealized but
physically transparent model to explore the fundamental
mechanism of the Mott MIT, accurately capturing its electronic
properties remains a significant theoretical challenge.
Traditional ground-state density functional theory [16, 17],
despite its success in weakly correlated systems, fails
to describe the insulating behavior of strongly correlated
materials in the absence of explicit symmetry breaking [18],
as evidenced in well-known cases such as transition metal
oxides. Even advanced many-body approaches like the GW
approximation often do not predict insulating states unless
long-range magnetic order is imposed [19, 20]. In contrast,
methods that explicitly incorporate many-body correlation
effects, such as dynamical mean field theory [21, 22] and
natural orbital functional (NOF) theory (NOFT) [23, 24], have
been shown to correctly capture insulating phases without
invoking long range spin order [25, 26]. This capability is
particularly relevant in model hydrogen systems, where
electron correlation alone drives localization. Within this
context, NOFT offers a promising framework to study finite
hydrogen clusters as minimal yet nontrivial systems for
understanding the MIT. In the present work, we employ
NOFT to investigate signatures of the MIT in hydrogen cubes,
focusing on the fundamental energy gap and the harmonic
average of the atomic one-particle reduced density matrix
(1RDM) as key indicators, in order to highlight the role of
electronic correlation beyond mean-field approximations.

This article is organized as follows. First, we introduce the
key concepts of NOFT, along with the electron-pairing-based
approximations used throughout this work. Next, the
computational methodology is presented, followed by a
discussion of the results. The article closes with a summary of
the main findings

II. NATURAL ORBITAL FUNCTIONAL THEORY

NOFT is the formulation of the 1RDM functional theory
[27–30] in the natural orbital (NO) representation [31].
It offers a computationally efficient alternative [32] to
conventional wavefunction-based methods, which often

exhibit steep scaling. By using the 1RDM as the central
variable and reconstructing the two-particle reduced density
matrix (2RDM) through well-founded approximations,
NOFT allows for an accurate description of strongly
correlated electronic states, showing particular robustness
in multireference regimes [33–40]. In this framework,
the ground-state energy is expressed as a functional of
the NOs and their occupation numbers (ONs), which
are variationally optimized. The presence of significantly
fractional ONs reveals a multiconfigurational character, a
regime traditionally addressed by methods such as CASPT2
[41]. However, these approaches require active space selection
and become computationally expensive as the number of
correlated orbitals increases. In contrast, NOFT correlates all
electrons in all orbitals within the chosen basis set, avoiding
the need to define an active space and eliminating arbitrary
user choices. This makes NOFT particularly suitable for
processes such as bond breaking and formation [42], where
the optimal active space is not known a priori, while also
offering greater accessibility for non-expert users.

In recent years, NOFT has undergone significant progress
from both theoretical and computational perspectives [43–45].
A notable result of this progress is the family of Piris NOFs
(PNOFs) [46–48], which have consistently demonstrated
competitiveness with standard electronic structure methods.
These functionals have shown effectiveness across a wide
range of applications [49–51], including the description of
excited states [52], molecular dynamics simulations [53],
and the mitigation of delocalization errors [54]. More
recently, NOFs have been incorporated into quantum
computing frameworks to enhance energy estimation
efficiency within the variational quantum eigensolver
(VQE) algorithm, resulting in the development of a
NOF-VQE [55]. On the computational side, recent advances
[56–58] have considerably reduced the cost of NOF
calculations. A key improvement has been the integration
of modern numerical techniques inspired by deep learning,
particularly momentum-based optimization methods, which
have significantly accelerated convergence [58]. These
developments have enabled NOFT to treat strongly correlated
systems efficiently, establishing it as a practical tool for
large-scale applications.

The ground-state energy of a NOF is expressed in terms of the
set of NOs

{
ϕi

}
and their ONs {ni} as

E[N, {ni, ϕi}] =
∑

i

niHii +
∑
i jkl

D[ni,n j,nk,nl]⟨i j|kl⟩ (1)

where the one- and two-electron integrals are given by

Hii =

∫
drϕ∗i (r)

(
−
∇

2
r

2
+ v(r)

)
ϕi(r) (2)

⟨i j|kl⟩ =
∫ ∫

dr1dr2

ϕ∗i (r1)ϕ∗j(r2)ϕk(r1)ϕl(r2)

|r2 − r1|
(3)
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In Eq. (2), ν(r) represents the nuclear potential derived
from the molecular geometry within the Born–Oppenheimer
approximation, assuming no external fields. The exact form
of the electron–electron interaction energy functional is
unknown, and different functional forms of D[ni,n j,nk,nl]
define distinct NOFs.

The approximate functional in Eq. (1) explicitly depends
on the 2RDM, requiring not only the N-representability of
the 1RDM [59] but also that of the functional itself [60].
Specifically, the reconstructed D[ni,n j,nk,nl] must satisfy the
same N-representability conditions as an unreconstructed
2RDM [61], in order to ensure the existence of a compatible
N-electron system. Different reconstructions of D under these
constraints have given rise to the various PNOFs.

In this work, we focus on electron-pairing-based PNOFs
[62]. Accordingly, we consider NI unpaired electrons, which
determine the system’s total spin S, while the remaining
NII = N−NI electrons form pairs with opposite spins, resulting
in zero net spin contribution from the paired electrons.
Within the spin-restricted formalism, all spatial orbitals φp
are doubly occupied in the ensemble, and the ONs of both
spin components are equal [63]. Following the partitioning of
electrons into NI and NII, the orbital space Ω is divided into
two subspaces:Ω = ΩI⊕ΩII. The subspaceΩII consists of NII/2
mutually disjoint subspaces Ωg, each containing a reference
orbital |g⟩ for g ≤ NII/2, along with Ng associated orbitals |p⟩
for p ≥ NII/2. Taking spin into account, the total occupancy of
each subspaceΩg is equal to 2. Similarly,ΩI is composed of NI
mutually disjoint subspaces; however, each Ωg ∈ ΩI contains
only a single orbital g with ng = 1/2, corresponding to one
unpaired electron whose spin state remains unspecified. It
follows that the trace of the 1RDM equals the total number of
electrons N.

This study focuses on finite hydrogen clusters, for which
PNOF7 [47, 64] is employed. Previous studies have
demonstrated that PNOF7 accurately reproduces the potential
energy curves of such systems in smaller-scale cases [37,38]. In
particular, it captures the correct physical behavior in both the
bonding and dissociation regimes, yielding stable and reliable
dissociation energies.

The energy expression for PNOF7 is given by

E
[
N, {np, φp}

]
= Eintra + Einter (4)

The intra-pair component is formed by summing the energies
Eg of electron pairs with opposite spins and the single-electron
energies of unpaired electrons, specifically:

Eintra =

NII/2∑
g=1

Eg +

NII/2+NI∑
g=NII/2+1

Hgg (5)

Eg = 2
∑
p∈Ωg

npHpp +
∑

q,p∈Ωg

Π(nq,np)Lpq (6)

Here, Lpq =
〈
pp|qq

〉
are the exchange-time-inversion integrals

[65]. The matrix elements Π(nq,np) = c(nq)c(np), where c(np) is
defined by the square root of the ONs as follows:

c(np) =


√

np, p ≤ NII/2
−

√
np, p > NII/2 +NI

(7)

The inter-subspace term is given by

Einter =

NB∑
p,q=1

′
{nqnp

(
2Jpq − Kpq

)
−ΦqΦpLpq} (8)

where Jpq =
〈
pq|pq

〉
and Kpq =

〈
pq|qp

〉
are the Coulomb

and exchange integrals, respectively. The term Φp =
√

nphp,
with hp = 1 − np, defines a correlation factor that becomes
significant when the ON np deviates from 0 or 1. NB denotes
the number of basis functions considered. The prime in
the summation indicates that only inter-subspace terms are
included. Notably, PNOF7 introduces inter-pair static electron
correlation, as Φp increases in regions where orbitals exhibit
strong multiconfigurational character [64].

III. METHODOLOGY

The transition from a metallic to an insulating phase is
generally associated with either a structural reorganization or
a mechanism driven by the electron correlation. In this work,
we focus on the latter, which underlies the MITs observed in
hydrogen clusters. As the interatomic distance increases, the
overlap between atomic orbitals responsible for conduction
decreases, resulting in a reduced bandwidth. In systems
with strong electron correlation, this reduction can lead to
a Mott transition, where Coulomb repulsion dominates over
delocalization, ultimately opening an energy gap. A critical
distance exists beyond which electronic overlap becomes
insufficient to sustain metallic behavior, signaling the onset
of insulating character. This concept forms the basis for a
first estimation of the critical interatomic distance, rc, derived
from the balance between Coulomb interaction and electronic
delocalization.

An estimate of rc can be obtained from fundamental physical
arguments. The distance at which Coulomb interaction
dominates over delocalization can be interpreted through the
Heisenberg uncertainty principle (∆p∆r ∼ ℏ). For an electron
confined to a region of size rc, the characteristic momentum
is ∆p ∼ ℏ/rc, yielding a kinetic energy of Ek ∼ (∆p)2/2m ∼
ℏ2/2mr2

c , while the Coulomb potential energy between two
electrons at distance rc is Ep = e2/4πϵ0rc. The transition occurs
when Coulomb repulsion becomes significantly larger than
the kinetic energy, which we assume as Ep = 10 · Ek. Solving
this condition for rc gives rc = 5a0 = 2.65 Å. This value is close to
the estimate obtained by assuming a homogeneous electron
gas with a critical density nc ∼ 0.01 a−3

0 ; using the relation
nc ∼ r−3

c , one obtains rc ∼ 4.64a0 ∼ 2.45 Å. However, studies
on hydrogen chains and clusters show that the transition
occurs at shorter distances. A diffusion quantum Monte Carlo
study [13] benchmarks the transition between paramagnetic
and antiferromagnetic body-centered cubic atomic hydrogen
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in its ground state, reporting a second-order metal–insulator
transition at rc = 2.27a0 = 1.2 Å.

The most rigorous way to define the MIT is by identifying
the opening of a gap in the density of states at the Fermi
level. However, this criterion is not directly applicable to finite
clusters, which inherently exhibit a discretized spectrum.
Nevertheless, the transition can still be located as the point
where the fundamental energy gap surpasses the effects of
finite-size discretization. Since this discretization error is not
known a priori, we adopt a finite-size scaling approach in
which it is accounted for by extrapolating the fundamental
gap, defined as δ = E(N + 1) + E(N − 1) − 2E(N), to the
thermodynamic limit (N→∞). To this end, we compute δ for
hydrogen cubes of increasing size and for a set of interatomic
distances r. The resulting δ(N) values are fitted as a function
of N using a decaying polynomial model:

δ(N) = δ∞ +
A

Np (9)

where δ∞ is the extrapolated gap in the infinite system, A and
p are fitting parameters, and N is the number of electrons in
the system. The MIT is then identified as the point where δ∞
becomes nonzero, indicating the emergence of an insulating
phase in the thermodynamic limit.

IV. RESULTS

We begin our analysis by examining the symmetric
dissociation of a large hydrogen cluster consisting of 512
atoms arranged in a cubic structure (8×8×8). All calculations
were performed using the DoNOF software package [56] with
the 6-31G basis set [66] and the def2-universal-jkfit auxiliary
basis set, employing real orbitals within a spin-restricted
framework. The perfect pairing scheme (Ng = 1) is used, as
it is the highest pairing allowed by the negatively charged
system. This leads to a fully correlated treatment of 512
electrons distributed over 512 spatial orbitals, making it a
highly demanding electronic structure calculation.

Each configuration was defined by uniformly setting
the interatomic distance between the nearest neighbours,
resulting in a series of hydrogen cubes that span from a
delocalised metallic regime to a localised insulating one.
In the dissociation limit, the system becomes a collection
of 512 non-interacting hydrogen atoms. Importantly, the
correlation effects in the hydrogen cube involve all electrons
equally, posing a significant challenge for electronic structure
methods. To contextualise our results, we refer to a
representative set of Quantum Monte Carlo studies on
hydrogen systems [12–15], highlighting the broader relevance
of our work within the field.

Fig. 1 presents the total electronic energy as a function
of the interatomic distance r for hydrogen cubes with 512
atoms. The results obtained with PNOF7 (red) and restricted
Hartree–Fock (HF, black) are shown for comparison. The
PNOF7 curve exhibits a clear minimum around r ≈ 1.6 Å. As
the distance increases beyond this point, the energy gradually
stabilizes, reflecting the transition toward the dissociated

insulating state. In contrast, HF significantly overestimates
the total energy across the entire range and fails to capture
the energetic stabilization associated with electron correlation,
particularly in the strongly correlated regime.

Figure 1. Potential energy curves for the symmetric dissociation of hydrogen
cubes with 512 atoms.

To quantitatively describe the MIT, we computed the
harmonic average γ of all off-diagonal elements Γao

µν of
the 1RDM on the atomic orbital basis. In this regard,
we generalized the definition on Ref. [67] to count only
interatomic elements as follow:

γ =

√√√√ 1
NB (NB − 2)

∑
µ∈A, ν∈B

A,B

(Γao
µν)2 (10)

where the summation indices indicate the selection of the
components associated with the atomic orbital ϕµ on atom
A and ϕν on atom B, while omitting the elements related to
atomic orbitals on the same atom. Specifically, for the 6-31G
base set used here, which contains two atomic orbitals per
hydrogen atom, this means excluding the diagonal blocks
2 × 2. Consequently, NB (NB − 2) denotes the complete count
of elements in the summation, although we note that the
denominator depends on the number of atomic orbitals
centered on each atom. Å

Figure 2. Harmonic average γ of the off-diagonal elements of Γao. The critical
distance (rc) for the metal-to-insulator transition is indicated by a vertical
dotted line.
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Fig. 2 shows the evolution of this quantitative indicator
of electronic delocalization. In the PNOF7 results (red),
γ decreases rapidly as the interatomic distance increases,
signaling a transition from a delocalized metallic phase to
a localized insulating phase. This behavior is consistent with
the expected suppression of spatial coherence: as electrons
localize, the off-diagonal elements Γao

µν tend toward zero,
leading to a harmonic average that vanishes in the insulating
limit. In contrast, HF results (black) exhibit a much slower
decay and eventual saturation of γ, failing to capture the
correlation-driven localization process.

The value rc ≈ 1.2 Å, is the estimated critical distance for
the MIT, obtained using the finite-size scaling approach.
The fundamental energy gap obtained δ(N) for hydrogen
cubes of various sizes, ranging from N = 8 (2 × 2 × 2) to
N = 512 (8× 8× 8), and for a set of interatomic distances r are
shown in Fig. 3.

Figure 3. Fundamental energy gap for hydrogen cubes of various sizes.

The resulting values of δ(N) were fitted as a function of N
using the decaying polynomial form of Eq. 9, as illustrated in
Fig. 4.

Figure 4. Fundamental energy gap δ(N) as a function of system size N for
hydrogen cubes at various interatomic distances r, color-coded as indicated
by the color bar on the right. The data points correspond to calculated values,
and the lines represent the fits using the decaying polynomial model of Eq. 9.

Each curve corresponds to a different interatomic distance r,
color coded from purple (short distances) to yellow (large
distances). The fits demonstrate excellent agreement with
the computed data points across all sizes and distances
considered. For small r, the curves show a finite size
dependence: δ(N) decreases significantly with increasing N,
confirming that the finite gap observed in small clusters
is a size effect. In contrast, at large interatomic distances
(insulating regime), the gap is almost size independent, and
the extrapolated value δ∞ closely matches the computed data
for all cluster sizes. This behavior confirms the effectiveness of
the extrapolation scheme and validates its use in identifying
the metal–insulator transition from finite cluster data.

Fig. 5 shows the extrapolated values of the fundamental gap
δ∞ as a function of the interatomic distance r, obtained from
finite-size scaling of hydrogen cubes. The curve exhibits a
smooth and monotonic increase of δ∞ with r, transitioning
from metallic to insulating behavior. At short distances, δ∞
follows an approximately linear trend. A linear regression
in the interval corresponding to r ∈ [1.8 Å, 2.5 Å] produces
the model δ∞ = 0.190 · r − 0.227 with a determination
coefficient R2 = 0.993. This fit predicts the closure of the gap
at a critical distance r = 1.2 Å, corresponding to a critical
electronic density of nc ≈ 0.54 e−/Å3. Remarkably, this value
agrees with the Quantum Monte Carlo diffusion estimates of
the Mott transition in atomic hydrogen [13], confirming the
robustness and accuracy of the present approach.

Figure 5. Extrapolated fundamental energy gap δ∞ as a function of the
interatomic distance r, obtained from finite-size scaling of hydrogen cubes
with up to 512 atoms.

V. CONCLUSIONS

We have presented a comprehensive analysis of the metal
insulator transition (MIT) in finite hydrogen clusters using
Natural Orbital Functional Theory (NOFT). By examining
both the fundamental energy gap and the harmonic average
of the atomic one-particle reduced density matrix, we
assessed the onset of electron localization as a function of
the interatomic distance. The use of the electron-pair-based
functional PNOF7 enabled an accurate description of the
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metallic and insulating regimes and of the transition between
them.

Through a finite-size scaling analysis applied to hydrogen
cubes up to 512 atoms, we extrapolated the energy gap to
the thermodynamic limit. From this analysis, we identified a
critical interatomic distance of rc ≈ 1.2 Å, which is in excellent
agreement with Quantum Monte Carlo diffusion benchmarks.
These results confirm that the MIT in hydrogen clusters arises
from electron correlation effects and demonstrate the ability
of NOFT to capture strong correlation phenomena in large
systems with high accuracy and efficiency.

Together, the findings underscore NOFT’s potential
as a reliable and efficient framework for exploring
correlation-driven phase transitions in extended systems.
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[20] C. Rödl, F. Fuchs, J. Furthmüller and F. Bechstedt, Phys.

Rev. B 79, 235114 (2009).
[21] J. Kuneš, A. V. Lukoyanov, V. I. Anisimov, R. T.

Scalettar and W. E. Pickett, Nat. Mater. 7, 198 (2008).
[22] O. Miura and T. Fujiwara, Phys. Rev. B 77, 195124 (2008).
[23] M. Piris, Adv. Chem. Phys. 134, 387 (2007).
[24] M. Piris, Adv. Quantum Chem. 90, 15 (2024).
[25] S. Sharma, J. K. Dewhurst, S. Shallcross and E. K. U.

Gross, Phys. Rev. Lett. 110, 116403 (2013).
[26] Y. Shinohara, S. Sharma, S. Shallcross, N. N. Lathiotakis

and E. K. U. Gross, J. Chem. Theory Comput. 11, 4895
(2015).

[27] T. L. Gilbert, Phys. Rev. B 12, 2111 (1975).
[28] M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).
[29] S. M. Valone, J. Chem. Phys. 73, 1344 (1980).
[30] C. Schilling, J. Chem. Phys. 149, 231102 (2018).
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The charge of clays plays an important role in the mobility of
compensating cations and in swelling processes. In this work we
have developed a method to generate Lithium Fluorhectorite (Li-Fh)
clay models with a charge of -1.2e and a non-homogeneous charge
distribution. This charge is closer to the experimentally reported
value. We used this approach to study their interaction with water
using Molecular Dynamics (MD) simulations. The MD simulations
showed that the Li+ diffusion coefficient increases by two orders of
magnitude with decreasing clay charge. Population analyses and Li+

coordination indicate a greater interaction of the cations with water
molecules with decreasing clay charge, leading to a deformation in
the stacking of clay layers in the 010 model. These results highlight
the important influence of clay charge on cation dynamics and
structural behaviour, providing insight into delamination and swelling
mechanisms.

La carga de las arcillas desempeña un rol importante en la
movilidad de los cationes de compensación y en los procesos de
hinchamiento. En este trabajo hemos desarrollado un método para
generar modelos de la arcilla Litio Fluorhectorita (Li-Fh) con carga
igual a -1,2e y una distribución de carga no homogénea. Esta carga
se aproxima más al valor reportado experimentalmente. Utilizando
simulaciones de dinámica molecular (DM) hemos estudiado la
interacción de la Li-Fh con agua. Las simulaciones de DM mostraron
que el coeficiente de difusión del Li+ aumenta en dos órdenes de
magnitud con la disminución de la carga de la arcilla. Los análisis de
población y la coordinación del Li+ indican una mayor interacción del
catión con las moléculas de agua al disminuir la carga de la arcilla,
lo que conduce a una deformación en el apilamiento de las láminas
en el modelo 010. Estos resultados ponen de relieve la importante
influencia de la carga de la arcilla en la dinámica de los cationes
y el comportamiento estructural, proporcionando una visión de los
mecanismos de delaminación e hinchamiento.

Keywords: Molecular Dynamics Calculations (Cálculos de Dinámica Molecular); Diffusion in nanoscale solids (Difusión en sólidos en la
nanoescala); Computer modeling; simulation (Modelación y simulación computacional).

I. INTRODUCTION

Clay materials, with their unique layered structures and
inherent ion-exchange capabilities, are widespread in nature
and indispensable in many technological applications [1].
The ability of clays to selectively adsorb and release ions
is fundamental to a wide range of processes, including
soil fertility management [2], wastewater treatment [3] and
the development of advanced materials [4]. In agriculture,
clays play a crucial role in retaining essential nutrients and
regulating their availability to plants [5]. In environmental
remediation, they are used to remove heavy metals and
organic contaminants from contaminated water and soil
[6]. Furthermore, the ion-exchange properties of clays are
exploited in catalysis [7], drug delivery systems [8, 9] and
the preparation of novel nanocomposites [10]. Consequently,
a thorough understanding of the mechanisms governing
ion exchange in clay materials is essential to optimise their
performance in existing applications and to explore new
opportunities in various scientific and technological fields.
The isomorphic substitution of higher valence atoms for

lower valence atoms within the clay framework creates a
negative charge density that is neutralized by Group I and II
cations, known as compensating cations. These compensating
cations are located in the interlayer spaces and on the surface
of the clay. Together with water molecules, they exhibit
high mobility within the material. The interaction of these
compensating cations with water molecules and the clay
framework influences processes such as ion exchange and
swelling. Smectite-type clays with charges between -0.2 and
-0.6e are known to swell. However, in materials with higher
charges, such as micas, the cation-clay lattice interactions
prevent swelling [11]. Lithium fluorhectorite clay (Li-Fh) is
a 2:1 layered silicate in which a fraction of the Mg2+ cations
in the trioctahedral sites are replaced by Li+ cations, resulting
in a negative structural charge that is compensated by Li+

ions in the interlayer space. Its chemical composition is
Lix(Mg6−xLix)F4Si8O20. Li-Fh can be delaminated into single
layers by osmotic swelling in deionized water [11]. In previous
work, we investigated the cation motion of Li-Fh clay
models with a charge of -2e using molecular dynamics (MD)
simulations [12]. However, the actual charge of this material
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is much lower, closer to -1.2e [13,14]. To evaluate the influence
of clay charge on the movement of Li+ compensating cations
and their interaction with water, we created one hundred
Li-Fh models with a charge of -1.2e by modifying models
with a charge of -2e. Then, MD simulations were performed
to evaluate the energy of the 100 models, and we selected the
most stable one to build models representing the clay lattice
in three different scenarios: in the center of the crystal (bulk
model), on the surface created by removing the periodicity
in the crystallographic b direction (010 model), and on the
surface without periodicity along the c direction (001 model).
Finally, the diffusion of Li+ in the three models with charge
-1.2e is studied and compared with that obtained for the model
with charge -2e. The results obtained here will shed light on
the role of clay charge in the mobility of compensating cations
and their interaction with the clay framework and water, thus
contributing to the understanding of complex processes such
as swelling and ion exchange.

II. METHODOLOGY

In our previous studies, we employed a LiFh model consisting
of 75 unit cells, generated by 5 × 5 × 3 replication of the LiFh
unit cell along the crystallographic axes [12, 15]. In each unit
cell of those models, two magnesium atoms in the octahedral
sheet were replaced by two lithium atoms, resulting in a
-2e charge balanced by two lithium compensating cations
(Li+). The unit cell formula was Li+2 (Mg4Li2)F4Si8O20×12H2O.
However, this model overestimates the true charge, which
is closer to -1.2e [13, 14]. Therefore, we developed a method
to adjust the charge of the initial model [12, 15] and
generate models with a -1.2e charge. This involved randomly
replacing one lithium atom in the octahedral layer with
a magnesium atom and removing one Li+ compensating
cation in 60 of the 75 unit cells, resulting in unit cells with
the formula Li+(Mg5Li)F4Si8O20 × 12H2O. The remaining 15
unit cells retained the original formula Li+2 (Mg4Li2)F4Si8O20 ×

12H2O. In this way, 100 different periodic models with a
non-homogeneous charge distribution of -1.2e were created.
The Python code used in this study is available in Section S1
of the Supporting Information. The interatomic interactions
in lithium fluorohectorite (LiFh) were modeled using the
CLAYFF force field [16], with minor modifications to
the atomic charges to ensure electroneutrality. CLAYFF
incorporates electrostatic interactions, which are calculated
using coulombic forces, and van der Waals interactions,
which are described using a 12-6 Lennard-Jones potential.
For model 010, the surface OH valence-compensating groups
were modeled using Morse potential terms for edge surfaces,
as proposed by Pouvreau et al [17]. However, as explained in
previous work, the angle term and water potential proposed
by Pouvreau et al. could not be fitted to our model [12].
We adopted the parameters of the Li+ compensating cation,
including its charge (+1e) and Lennard-Jones coefficients,
from Koneshan et al [18]. The full details of the charges and
parameters used in the CLAYFF force field can be found in
Section S2 of the Supporting Information. Molecular dynamics
(MD) simulations were performed using the DL POLY code
[19] to determine the total energy of the 100 periodic models.

The first MD calculations were performed in the NVE
ensemble during 20 ps at 300 K, with temperature control
during the first 10 ps. The time step used in all simulations
was 1fs. The ten models with the lowest energy were selected
and additional MD simulations were performed. The second
MD simulations were done in the NVE ensemble during 200
ps without temperature control. Finally, 200 ps MD runs were
performed in the NPT ensemble to allow the models to adjust
the volume. In all simulations the temperature was set to 300
K and the pressure in the NPT simulations was 1atm. At the
end of the third MD simulation, the total energy of the ten
models was evaluated and compared to select the most stable
one.

The most stable model of charge -1.2e was used to build three
different models to evaluate the Li+ movement, see Figure 1.
The first is the periodic model resembling the clay bulk. The
other two models were constructed by cleaving the periodicity
in the crystallographic directions b and c, as described in
reference [12], and were designated 010 and 001. These two
models are in contact with a water reservoir containing 1493
and 1205 water molecules, respectively, and were equilibrated
as described in reference [12]. Once the three models (bulk,
010 and 001) were perfectly equilibrated, the 20 ns production
runs were performed in the NPT ensemble at a pressure of
1 atm and a temperature of 300 K, with an integration time
step of 1 fs. The Nosé-Hoover thermostat and barostat were
used [20, 21], each with a relaxation time of 100 fs. Periodic
boundary conditions were applied in all simulations, and
the Ewald summation method was used to calculate the
electrostatic interactions of the systems [22, 23]. The cutoff
for long-range interactions -Coulomb and Lennard-Jones
potentials- was set to 10 Å. The trajectory of the atoms in the
NPT simulations was collected every 5000 steps for dynamics
and structure analysis. Radial distribution functions (rdf), the
population functions (n(r)), and the Li+ coordination were
calculated and collected every 5ps for the interaction of the
Li+ with the oxygens of clay (Oclay) and oxygens of water
(OW). The Diffusion coefficient and the type of motion of
Li+ cations were also determined. The diffusion coefficient
(D) for each elemental species was calculated from molecular
dynamics (MD) trajectories using the Einstein-Smoluchowski
relation, which relates D to the asymptotic slope of the mean
squared displacement (MSD) in the diffusive regime [22, 23].
In DL POLY, the atomic displacements were analyzed by
calculating the MSD from particle trajectories recorded in the
HISTORY file at 5000 step intervals, with ensemble averaging
over all particles of each element and multiple time origins.
The diffusion coefficient was determined by linear regression
of the MSD(t) curve according to:

D =
1

6N
lı́m
t→∞

d
dt

N∑
i=1

|⃗ri (t) − r⃗i (0)| (1)

where N is the number of particles for the particular element,
and r⃗i (t) is the position vector of particle i at time t. The
linear regime has been carefully identified by excluding the
initial short-time ballistic motion (typically t < 10 ps). This
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methodology is well established for equilibrium systems
and has been rigorously validated against both theoretical

predicions and experimental measurements for comparable
systems.

Figure 1. The models of charge -1.2e used in the simulations, (a) bulk model, (b) 010 model, (c) 001 model. The orange, gray, blue, yellow, pink, and white
spheres correspond to Si, O, Li, Mg, F, and H atoms, respectively. The simulation boxes are enclosed by the black rectangles.

III. RESULTS AND CONCLUSIONS

The relative energies of the most stable models are shown in
Table 1. They have been calculated as the energy difference
with the model of lower energy. Model 31 exhibits the highest
stability, with an energy difference of 40 kcal/mol compared
to the other models. The thermal energy of the system is
negligible compared to this energy gap (see Section S3 of the
Supporting Information for details).

Table 1. Relative energies of the ten most stable models.

Models ∆E (kcal/mol)

31 0
7 40

53 60
15 60
75 70
65 70
36 70
21 70
62 80

Therefore, thermal fluctuations cannot explain the observed
differences in stability between the models. In model 31,
the unit cells with q = -2e, which we consider defects, are
distributed among the three clay layers: six in one layer and
four or five in the other two layers. Model 31 was then used
to create three clay models: bulk, 010, and 001 (see Figure 1).

As in our previous work related to the movement of Li+ in
the -2e charged LiFh model [12], we want to evaluate the Li+

diffusion in different environments represented by our three
models and relate this diffusion to the clay charge. In the
models with -1.2e charge, we observed a significant number
of Li+ cations moving from their initial positions located near
the hexagonal cages inside the clay layer. Of the 90 Li+ ions
in each model, 84 moved from their initial positions in the
bulk model, while 80 and 78 moved in the 010 and 001

models, respectively.These results contrast sharply with our
previous results for the -2e charged model, where only 20 of
150 Li+ cations moved from their initial positions in the 010
model [12].

This comparison highlights the critical role of clay charge
in influencing the mobility of compensating cations, which
has implications for all related properties and applications
of this material. During the 20 ns simulations, Li+ cations
exhibited several types of motions: (I) remaining in their initial
position, (II) moving to another hexagonal cage within the
same layer, (III) moving to the interlayer space, (IV) diffusing
into the outer water reservoir (for 010 and 001 models), (V)
crossing the interlayer and occupying the opposite layer, (VI)
diffusing to another layer, and (VII) moving to an octahedral
edge. Movements VI and VII were only observed in the 010
model after movements III and IV. Figure 2 shows a schematic
representation of these motions in the 010 model.

Figure 2. Schematic representation of the possible Li+ motions at the 2 ns
of 010 simulation. Various movements of the Li+ cations in the 010 model
are depicted and denoted using Roman numerals as explained in the text.
The simulation box is indicated within the black rectangle, and boundary
conditions were applied to enhance visualization. The orange, grey, blue,
yellow, pink and white spheres correspond to Si, O, Li, Mg, F and H atoms
respectively.
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Table 2 shows the number of Li+ cations that remained in
their initial positions (I) and those that diffused via different
types of motion. As shown, only six Li+ ions remained in their
initial positions in the bulk model, compared to 10 and 12 in
the 010 and 001 models, respectively. This suggests a stronger
interaction between the clay and its native cations at the edges.
Table 2. Li cations moving in the three models organized by the type
of movement. (I) remaining in their initial position, (II) moving to another
hexagonal cage within the same layer, (III) moving to the interlayer space, (IV)
diffusing into the outer water reservoir (for 010 and 001 models), (V) crossing
the interlayer and occupying the opposite layer, (VI) diffusing to another layer,
and (VII) moving to an octahedral edge.

Type of movement of Li+ Bulk 010 001

I 6 10 12
II 24 23 17
III 37 18 29
IV - 18 14
V 23 12 18
VI - 15 -
VII - 12 -

In the bulk model, 24 Li+ cations moved to another hexagonal
cage within the same layer, 37 diffused into the interlayer
region, and 23 crossed the interlayer and occupied positions
in the opposite layer. In the 001 model, 17 Li+ ions moved
to another hexagonal cage within the same layer, 18 diffused
into the opposite layer, and 29 were located in the interlayer
region. During the simulation, 19 of 30 Li+ ions diffused into
the outer water reservoir. At the end of the simulation, 14
cations remained in the outer water reservoir and 5 cations
had diffused beyond the 30 Å width of the water reservoir
and settled in the opposite layer. In contrast, in the 001 model
with a -2e charge, only 2 Li+ cations diffused into the water
reservoir during simulation [12]. This further emphasizes the
strong relationship between the clay charge and the mobility
of the compensating cations.

Clay materials, especially hectorite clays, swell when they
interact with water. The amount of water in the interlayer
space modulates the interactions between the clay lamellae.
The cation-cation and cation-clay interactions are also
modulated. Typically, clays with up to 25 weight percent
water are in the crystalline swelling regime [24]. In the 010
model, the clay interacts with 2393 water molecules (900 in the
interlayer space and 1493 in the external reservoir). The water
content in the system is approximately 43 % by weight. This
places the system in the osmotic swelling regime, suggesting
that delamination of the material might be expected. The
osmotic delamination of Li+-fluorhectorite clays is known to
result in nanolayers as thin as 1 nm (10) [11]. In water, the
individual layers can arrange themselves into a ”house of
cards”structure, as observed at the end of the simulation in
model 010. During simulation, we observed the displacement
of the clay layers as they interacted with the water, including
a deformation of the intermediate layer, which has the lowest
charge density (see Figure SI1 and the link of the video 010
in the supporting information). This deformation results in a
final system configuration that is highly deformed compared

to the initial model. Figure SI2 shows the 010 reflection of the
diffraction patterns of the initial configuration and the selected
configurations: 0.65, 3.29, 4.05 and 5.31 ns. As can be seen, the
2θ values decrease during the simulation due to the increase
in the b crystallographic parameter (from 81.94 to 83.61 Å)
caused by the displacement of the clay layers. The intensity
of the peaks also decreases, indicating a loss of crystallinity of
the model.

Therefore, the Li+ cation diffusion process in the 010 model
undergoes motions different from those described for the bulk
and 001 models. In particular, as the lamellar order is lost, a
large number of cations are trapped in a space between the
clay layers (about 33 Å) that contains a significant number
of water molecules. This confinement of cations in such a
disordered system could explain why the diffusion coefficient
of Li+ cations is lower in the 010 model than in the 001 model,
as shown in Table III.

Table 3. Diffusion coefficients (D) of the Li+ and water molecules in the clay
models.

D (×10−9 m2 s−1)

Model
charge q = -1.2e q = -2ea

Model Bulk 010 001 010 001

Li+ 0.1581 0.1876 0.3171 1.2427 × 10−3 6.3917 × 10−3

OW 1.8022 3.9434 2.7717 4.1367 3.0629

a) Reference [12]

The diffusion coefficients (D) of the LiFh models with charge
-1.2e are two orders of magnitude higher than those of the
models with charge of -2e (Table 3), consistent with our
previous discussion indicating that Li+ mobility is greater in
lower charged clay models. Table 3 also shows that in the LiFh
models with q=-1.2e, the diffusion coefficients are very similar,
following the trend 001 > 010 > Bulk. As discussed above, the
lower D value observed in the 010 model compared to the
001 model is attributed to the confinement of Li+ cations in
the deformed interlayer region. The lower D value of the bulk
model can be associated with the greater confinement of Li+

cations within the interlayer, which restricts their movement
compared to the models with surfaces in contact with a water
reservoir. This confinement effect in the bulk model is also
responsible for the lower D value of the water molecules.

To further characterize the diffusion mechanism, we analyzed
the mean square displacement (MSD) of Li+ cations
versus time (Figure SI3 of the Supporting Information).
The logarithmic plot (log(MSD) vs log(t)) reveals normal
(Fickian) diffusion (slope m ≈ 1), despite cation intercalation.
This behavior stems from the interlayer spacing’s capacity
to accommodate three water layers, preventing steric
crowding and maintaining bulk-like mobility. The absence
of subdiffusive exponents (m ≈ 0.5) excludes single-file or
strongly confined diffusion under these conditions, consistent
with expectations for such hydrated systems.
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Figure 3. Radial distribution function (a) Oclay-Li+ and (b) Li+-OW for the three different models: bulk (red line), 010 (blue line) and 001 (black line).

Figure 4. Number of Li+ coordinated with (a) with clay oxygens (b) with water molecules.

Li+ cations exhibit a jump diffusion mechanism characterized
by rapid displacements. The same diffusion mechanism has
been observed in our models with q = -2e [12]. Figure SI4
shows examples of displacements (r− r0) as a function of time
for selected Li+, representative of movements II to V. Initially,
Li+ labeled 117 (green line in Fig. SI4) is located on a clay
layer at the surface in contact with the water reservoir. This
cation traverses the water reservoir during the simulation and
is finally located on the opposite clay layer, having traveled a
distance of 30 Å. In contrast, the labeled Li+ 78 (black line in
Fig. SI4) moves through the interlayer space. Between 9.2 ns
and 14.825 ns it is confined in a hexagonal cage within the same
layer. Then it diffuses back into the interlayer space, moving
through it and approaching both layers. The trajectory of Li+

2028 (blue line in Fig. SI4) is also shown. Similar to cation
78, it diffuses through the interlayer space and approaches
the opposite clay sheet for about 5.7 ns. It then remains in

a hexagonal cage of the opposite sheet for about 3 ns before
returning to the interlayer space. Later, at 10 ns and again at
16.5 ns, it returns to another hexagonal cage in the same layer
where it was at 5.7 ns. Cations 78 and 2028 exhibit type II, III,
and V motions.

The interaction of the lithium cations with clay and water
significantly affects cation diffusion. This interaction can
be evaluated using radial distribution functions (rdfs) and
population analysis. Figure 3 shows the rdfs of lithium cations
with oxygen from clay (Oclay-Li+) and with oxygen from water
(Li+-OW) for the evaluated models. The rdfs for Oclay-Li+

and Li+-OW are very similar in all three models and closely
resemble those obtained in the LiFh clay model with q =
-2e [12]. The maximum of the first peaks, associated with
the coordination of Li+ with oxygens, in both Oclay-Li+ and
Li+-OW is approximately 2.575.
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Figure 5. (a) n(r) Oclay-Li+ and (b) n(r) Li+-OW for the 001 model with charge equal -2e (blue line) and -1.2e (black line).

Figure 4 shows the coordination number of Li+ cations with
oxygen atoms from both clay and water molecules, calculated
for Li+-O distances shorter than 3 Å, using the final production
run configuration for all three models. As observed, all Li+

cations are coordinated with at least one water molecule.
Those Li+ cations that remain in their position or move to
another hexagonal cage in their layer or in the opposite layer
(movements I, II, and V, respectively) are coordinated with
six oxygen atoms of the clay framework and with few water
molecules. In contrast, Li+ cations located in the interlayer
space or diffusing into the bulk water (type III or IV motions)
are expected to coordinate with a larger number of water
molecules rather than the clay oxygens.

In the bulk and the 001 models, low (1) and high (6)
coordination with clay and water molecules predominate,
which is consistent with the results shown in Table 2. In these
models, Li+ cations are mainly located near the clay or in
the interlayer space. Furthermore, there are more Li+ cations
coordinated with 5 or 6 water molecules in these models
compared to the 010 model.

In the 010 model, there are more Li+ cations coordinated with
1 and 2 water molecules. This difference is probably due to the
deformation of the 010 model in the presence of water. Finally,
the role of the clay charge on the mobility of the compensating
cations can be better understood by analyzing the population
functions, n(r), obtained from the radial distribution functions
(rdf). In the Li-Fh models with a charge of -2e that we used
previously [12], each oxygen atom in the clay experienced at
least one Li+ cation at a distance of less than 3 Å (blue line
in Figure 5a). This is only possible when Li+ is placed in the
center of the hexagonal cage.

When the charge of the clay model is -1.2e, the value of n(r)
decreases by 0.2, indicating that only 2 out of 10 oxygen
atoms in the clay have a Li+ cation at distances less than 3

Å. In contrast, the value of n(r) for Li+-OW, which provides
information about the average number of water molecules at
distances lower than 3 for each Li+ cation, increases from 1 to
3.5. This suggests that as the clay charge decreases, the cations
interact less with the framework of the material and more with
water molecules, leading to increased diffusion of Li+ cations.

IV. CONCLUSION

Model 31 was found to be the most stable of the one hundred
Li-Fh models generated with a charge of -1.2e. Based on
this, three models were constructed: bulk, 010, and 001. The
diffusion and movement of Li+ cations were studied in all
three models. Li+ cations can move within the interlayer
space, jump into hexagonal cavities within the same or
opposite layers, and diffuse into the solution in the surface
models. They can also migrate to other layers or to the edge
of the octahedral sheet in the 010 model. In Li-Fh models with
-1.2e charge, a larger number of Li+ ions diffuse with diffusion
coefficients two orders of magnitude higher than in models
with -2e charge. The diffusion coefficients (D) are similar in
the three models, following the order 001 > 010 > Bulk. The
compensating cations coordinate with a high number of clay
oxygens (6) when they are in the hexagonal cavity of the clay
lattice, or with a high number of water molecules (6) when
they are in the interlayer or diffuse into the solution. The
n(r) values also indicate that Li+ ions interact with a greater
number of water molecules in the lower charge models.
When the 010 model is in contact with a water reservoir, the
osmotic swelling process occurs, leading to the observation of
layer deformation resulting in a ”house of cards”structure. A
significant number of Li+ cations are trapped in the deformed
structure, which is why the value of D is lower in this model
than in the 001 model. The results demonstrate the importance
of the clay charge for understanding the movement of Li+
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cations, their interaction with clay and water molecules, and
the accurate reproducibility of delamination and swelling
processes of clays.

V. SUPPORTING INFORMATION

The supplementary online materials include the Python
code for generating nonhomogeneous LiFh models, the force
fields model description, description of the thermal energy
contribution in the clay-water system, and URL links to
simulation videos.
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S-shaped or sigmoid curves can be defined as the solutions
of autonomous first-order differential equations that satisfy four
conditions. Without solving the equations, we demonstrate that
the solutions of the logistic family and the Smith-Birch model
satisfy these conditions. We introduce two generalizations of the
Smith-Birch, whose solutions are identified as S-shaped for some
range of variation of the parameters. The new models introduced
here predict the spread of the disease better than traditional logistic
family models for time series of the cumulative number of cases for
the first 61 days of the COVID-19 pandemic in some countries.

Las curvas en forma de S o curvas sigmoidales pueden definirse
como soluciones de ecuaciones diferenciales autónomas de primer
orden que cumplen con cuatro condiciones, a través de las cuales
se demuestra sin necesidad de resolverlos que los modelos de la
familia logı́stica generalizada y el de Smith-Birch tienen soluciones
sigmoidales. Se introducen dos generalizaciones del modelo de
Smith-Birch, cuyas soluciones son curvas sigmoidales para cierto
rango de variación de los parámetros. Se encontraron series
temporales del número cumulativo de casos para los 61 primeros
dı́as de la pandemia de COVID-19 en algunos paı́ses donde los
nuevos modelos aquı́ introducidos predicen mejor la propagación de
la enfermedad que los modelos tradicionales de la familia logı́stica.

Keywords: Complex systems modelling (Modelado de sistemas complejos); Sigmoid curves (Curvas sigmoideas); Growth models (Modelos
de crecimiento); Data fitting (Ajuste de datos); Forecast (Pronóstico).

I. INTRODUCTION

S-shaped, or sigmoid curves (SC) can be found frequently
in sciences, including physics and complex systems. Their
ubiquity arises from their ability to approximate step-like
behaviors in a continuous and differentiable manner. The
S-shape is a consequence of competition between positive
feedback, which tends to produce exponential growth, and
negative feedback, which produces saturation or stabilization
due to limiting factors. Some paradigmatic examples of SC are
the Fermi-Dirac distribution function and the magnetization
in a system of two-state (spin 1/2) particles.

SC are observed in a wide variety of phenomena and have a
large number of applications. For example, in computational
sciences [1], neuro and behavioral sciences [2–6], molecular
biology [7], chemistry [8, 9], agricultural, livestock and
veterinary sciences [10–14], pedology [15], ecology [16–18],
economics and marketing [19, 20], electronics [21], materials
engineering [22–24], spectroscopy [25] and autonomous
driving [26]. An exhaustive review of more applications can
be found in [27].

Applications of SC in epidemiology deserve a special mention.
The cumulative number of cases in the early stages of
epidemics frequently exhibits a sigmoid growth behavior.
See, for example [28–44]. Sigmoid curves can be described

as solutions of first-order differential equations of the form:

dN
dt
= gΠ(N) (1)

where the function gΠ(N) with parameter vector Π =
{Π1,Π2, · · ·Πk}must satisfy the conditions [45]:

I. gΠ(N) is C1 over the interval [ f , c], with 0 ≤ f < c.

II. gΠ( f ) = gΠ(c) = 0.

III. gΠ(N) > 0 if N ∈ ( f , c).

IV. sgn(g′
Π

(N)) =
{

1 if N ∈ [ f ,N∗)
−1 if N ∈ (N∗, c]

where N∗ ∈ ( f , c).

Condition I guarantees that for each point Π∗ ∈ Rk, there
exists a unique integral curve N = N(t,Π∗) (i.e., the graph of
a non-prolongable solution) of equation (1) passing through
each point (t0,N0) of an open set contained in the stripR×( f , c)
(Section 4.4, Chapter 4, [46]). Property III ensures that the
solution N = N(t,Π∗) is an increasing function, while property
IV implies the existence of a unique inflection point (t∗,N∗) of
the solution curve that marks accelerated growth between f
and N∗, and decelerated or retarded growth between N∗ and
c. Condition II ensures that the stationary solutions defined
by the equilibrium positions f and c determine the lower and
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upper limits, respectively, of the dynamics of interest. In this
way, conditions (I-IV) guarantee the existence of S-shaped
solutions. Furthermore, under conditions (I-IV), equation (1)
only has equilibrium positions at the endpoints of the interval,
and these points cannot collapse, which means that the
parameters with the positiveness conditions considered in III
and IV do not bifurcate.

Equation (1) is separable, so it is solvable at least for t as a
function of N:

t − t0 =

N∫
N0

dN
gΠ(N)

(2)

where N(t0) = N0 is the initial condition. In some particular
cases it is possible to obtain N as an explicit function of t.

Different analytic and numerical methods have been used to
study SC [47–51].

II. THE LOGISTIC FAMILY

The simplest sigmoid growth model is the logistic model,
also known as the Verhulst model [52], a two-parameter,
second-order approximation of (1)

dN
dt
= rN

(
1 −

N
K

)
(3)

Logistic model satisfies SC conditions (I-IV) for f = 0 and
c = K. It exhibits an initial exponential growth with relative
growth rate r and a saturation value or carrying capacity
(horizontal asymptote) at N = K. The inflection point is
N∗ = K

2 , which is fixed for a given value of K only. This is
the main limitation of this model: more flexibility is needed
for the inflection point in order to fit different datasets. In order
to do that, several generalizations have been proposed as well
as for flexibilizing other features of the SC [13, 53–56]. This
generalization is achieved by including more parameters. In
[53] a generalized five-parameter logistic model is proposed:

dN
dt
= rNα

(
1 −

(N
K

)β)γ
(4)

whereα, β and γ are positive real numbers. In what follows we
shall call model (4) the Tsoularis generalized logistic model.
Conditions (I-IV) are satisfied for these parameter values
with f = 0, c = K and N∗ = K(γ/(γ + αβ))1/α, so the model
has SC solutions. Parameter α allows non exponential initial
growth, while β and γ, along with α, change the position of the
inflection point. In general, α, β and γ are intended to smooth
the equation (4) vector field.

Some well-known, particular cases of (4) are shown in the next
table.

Model α β γ
Logistic 1 1 1
Generalized Logistic α 1 1
Richards 1 β 1
Generalized Richards α β 1
Gompertz 1 → 0 1
Generalized Gompertz α → 0 1

III. THE SMITH-BIRCH MODEL

A different, lesser-known kind of generalization for the
logistic model was introduced by Smith [57] in order to
correct problems associated with time lags in a food-limited
population. Birch [58] arrived to the same result by
introducing an alternative modification in the logistic model,
trying to overcome some numerical unstabilities appearing in
the Richards model when fitting experimental data:

dN
dt
=

rN(K −N)
AN + K

(5)

This three-parameter model reduces to the logistic model
when A = 0 (furthermore, the case A = −1 corresponds to the
exponential growth). When A > 0 Smith-Birch model satisfies
conditions (I-IV) with f = 0, c = K and N∗ = K(

√
A + 1 − 1)/A,

so it produces SC. In this way, A changes the position of the
inflection point. In Figure 1 some solutions for this model are
shown.

A=0

A=0.1

A=0.5

A=1

A=2.5

2 4 6 8 10 12 14
t

2

4

6

8

10

N

Smith-Birch

Figure 1. Smith-Birch model curves with K = 10, N(0.01) = 0.1 and A = 0
(orange), A = 0.1 (green), A = 0.5 (purple), A = 1 (red), A = 2.5 (blue).
Inflection points correspond to N∗ = 5, 4.88, 4.49, 4.14, 3.48, respectively.

IV. NEW SIGMOIDAL CURVES

In a previous work, partially published in [44], we applied
several models of the logistic family to the time series for the
cumulative number of cases during the first 61 days of the
COVID 19 pandemic for 131 countries. We have found that
some countries’ data were not properly fitted with none of
the models considered, so it is interesting to study some new,
four-parameter generalizations of the Smith-Birch model:
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dN
dt
=

rN(K −N)
ANp + K

(6)

dN
dt
=

rNp(K −N)
AN + K

(7)

which we will call Smith-Birch A and Smith-Birch B models,
respectively. Both of these new models reduce to Smith-Birch
when p = 1.

They satisfy conditions (I-III) for A > 0 with f = 0 and c = K.
Condition IV requires a numerical analysis. Furthermore, it
does not seem possible to find analytic expressions for the
inflection point N∗. Hopefully, all these models, including
(4), are analytically solvable for t as a function of N, using
hypergeometric functions. See Appendix I for details. In
Figures 2 and 3 some solutions for Smith-Birch A and
Smith-Birch B models are shown.

p=0.5

p=1

p=1.5

p=2.5

5 10 15 20
t

2

4

6

8

10

N

Smith-Birch A

Figure 2. Smith-Birch A model curves with K = 10, N(0.01) = 0.1, A = 1 and
p = 0.5 (orange), p = 1 (green), p = 1.5 (purple), p = 2.5 (red). Inflection points
(numerically calculated) correspond to N∗ = 4.77, 4.14, 3.16, 1.82, respectively.
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Smith-Birch B

Figure 3. Smith-Birch B model curves with K = 10, N(0.01) = 0.1, A = 0.5
and p = 0.5 (orange), p = 1.1 (green), p = 1.5 (purple). Inflection points
(numerically calculated) correspond to N∗ = 3.11, 5.86, 7.11, respectively.

V. APPLICATIONS

As already mentioned, the traditional SC models listed in
the table above do not fit appropriately the time series for
the cumulative number of cases during the first 61 days
of the COVID 19 pandemic for some countries. In these
cases, Birch-Smith, Birch-Smith A or Birch-Smith B are good
alternatives to resolve the problem.

The data for the adjusted curves is generated using the
function NonlinearModelFit from the software Wolfram
Mathematica to obtain the optimal values of the parameters.
See Appendix II for the detailed methodology and Appendix
III for some countries’ optimal parameters.

In Figure 4 the results for Kiribati using several sigmoid
curves are shown. In this case, the best results correspond
to Birch-Smith model.

real data (averaged)

Smith-Birch

logistic

generalized logistic

Richards

Gompertz

10 20 30 40 50 60
Days

500

1000

1500

2000

2500

3000

Cumulative number of cases

Kiribati

Figure 4. Results for Kiribati using several sigmoid models: Smith-Birch
(orange), logistic (red), generalized logistic (blue), Richards (brown) and
Gompertz (magenta). The averaged real data is shown in black dots.

In figure 5 the results for Smith-Birch model are shown
separately. After the 35-day training period this model
produces a good prediction for more than 10 days.

real data (averaged)

Smith-Birch

10 20 30 40 50 60
Days

500

1000

1500

2000

2500

3000

Cumulative number of cases

Kiribati

Figure 5. Smith-Birch (orange) results for Kiribati. The averaged real data is
shown in black dots.

In figure 6 the results for Palau using several sigmoid models
are shown. The best results correspond to Birch-Smith A
model. In figure 7 the results for Smith-Birch and Smith-Birch
A models are shown separately. Both models fit well during
the 35-day training period, but afterwards Smith-Birch A
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produces a better prediction for more than 10 days. Similar
results are obtained for Somalia (figures 8 and 9).
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Figure 6. Results for Palau using several sigmoid models: Smith-Birch
(orange), Smith-Birch A (green), logistic (red), generalized logistic (blue),
Richards (brown) and Gompertz (magenta). The averaged real data is shown
in black dots.
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Figure 7. Smith-Birch (orange) and Smith-Birch A (green) results for Palau.
The averaged real data is shown in black dots.
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Figure 8. Results for Somalia using several sigmoid models: Smith-Birch
(orange), Smith-Birch A (green), logistic (red), generalized logistic (blue),
Richards (brown) and Gompertz (magenta). The averaged real data is shown
in black dots.
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Figure 9. Smith-Birch (orange) and Smith-Birch A (green) results for Somalia.
The averaged real data is shown in black dots.

Mauritius is an interesting example. As shown in Figure 10,
the carrying capacity was reached in a short time. Smith-Birch
A produces good results, although generalized Richards is the
best model in this case. Smith-Birch, on the contrary, is a bad
choice. In Figure 11 this curves are shown separately.

real data (averaged)
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Figure 10. Results for Mauritius using several sigmoid models: Smith-Birch
(orange), Smith-Birch A (green), logistic (red), generalized logistic (blue),
Richards (brown), generalized Richards (yellow) and Gompertz (magenta).
The averaged real data is shown in black dots.
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Figure 11. Smith-Birch (orange) and Smith-Birch A (green) results for
Mauritius. The averaged real data is shown in black dots.

In [44] it was proven by an statistical analysis that for Cuba
data the best model is generalized Gompertz. However, it
is interesting to evaluate the performance of Smith-Birch
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models in this case. Figures 12 and 13 show good results for
Smith-Birch A model, although Smith-Birch and Smith-Birch
B results are not satisfactory.
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Figure 12. Results for Cuba using several sigmoid models: Smith-Birch
(orange), Smith-Birch A (green), Smith-Birch B (purple), logistic (red),
generalized logistic (blue), Richards (brown), generalized Richards (yellow),
Gompertz (magenta) and generalized Gompertz (cyan). The averaged real
data is shown in black dots.
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Figure 13. Smith-Birch (orange), Smith-Birch A (green) and Smith-Birch B
(purple) results for Cuba. The averaged real data is shown in black dots.

The results for Cambodia using several sigmoid models are
shown in Figure 14. In this case, the best model is Smith-Birch
B. In Figure 15 it is shown separately, along with Smith-Birch
(for comparison).
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Figure 14. Results for Cambodia using several sigmoid models: Smith-Birch
(orange), Smith-Birch B (purple), logistic (red), generalized logistic (blue),
Richards (brown), generalized Richards (yellow), Gompertz (magenta) and
generalized Gompertz (cyan). The averaged real data is shown in black dots.
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Figure 15. Smith-Birch (orange) and Smith-Birch B (purple) results for
Cambodia. The averaged real data is shown in black dots.

VI. CONCLUSIONS

Two new, four-parameter sigmoid curves are introduced,
as generalizations of the Smith-Birch model, a member of
the logistic family. Analytic and numerical description of
these two models are presented. The applicability of the new
models for predicting early dynamics of infectious diseases is
shown in the case of epidemiologic data from the COVID-19
pandemic in countries where traditional models failed to
predict. Due to the wide variety of phenomena which can be
described using sigmoid curves, further applications in other
areas can be expected, for example, prediction curves of any
kind as envelopes of sigmoid curves.

VII. ACKNOWLEDGEMENTS

MTPM acknowledges financial support from COIC/STIA/10104
/2024 and PAPIIT DGAPA UNAM IN101822 projects and
hospitality received at Unidad Académica del IIMAS en
el Estado de Yucatán, Universidad Nacional Autónoma de
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VIII. APPENDIX I: ANALYTIC SOLUTIONS FOR
THE TSOULARIS GENERALIZED LOGISTIC,
SMITH-BIRCH, SMITH-BIRCH A AND SMITH-BIRCH
B MODELS

The Tsoularis generalized logistic model (4) with the initial
condition N(t0) = N0 has the solution

r(t − t0) =



1
βγ

(
1−( N

K )−β

1−( N
K )β

)γ
F(γ, γ, γ + 1,

(
N
K

)−β
)
∣∣∣∣∣N
N0

if α = 1

N1−α

α−1 F( 1−α
β , γ, 1 +

1−α
β ,

(
N
K

)β
)
∣∣∣∣∣N
N0

if α , 1

(8)
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where

F(a, b, c, z) =
Γ(c)
Γ(a)Γ(b)

∞∑
n=0

Γ(a + n)Γ(b + n)
Γ(c + n)

zn

n!
(9)

is the hypergeometric function [59].

The Smith-Birch A model (6) with the initial condition N(t0) =
N0 has the solution

r(t − t0) =
(

A
Kp

NpF(1, p, 1 + p,
N
K

) + ln
( N

K −N

)) ∣∣∣∣∣N
N0

(10)

The Smith-Birch B model (7) with the initial condition N(t0) =
N0 has the solution

r(t − t0) =

=



ln
(

N
(K−N)A+1

) ∣∣∣∣∣N
N0

if p = 1(
A+1

K ln
(

N
K−N

)
−

1
N

) ∣∣∣∣∣N
N0

if p = 2(
A

K(2−p) N
2−pF(1, 2 − p, 3 − p, N

K )+

+ 1
1−p N1−pF(1, 1 − p, 2 − p, N

K )
) ∣∣∣∣∣N

N0

if p , 1, 2

(11)

It should be noted that the solution of the Smith-Birch model
(5) is included in (10) and (11) when p = 1.

IX. APPENDIX II: METODOLOGY FOR TIME SERIES
ANALYSIS

As the number of cases is typically reported at regular
time intervals (daily, weekly, etc.), it is reasonable to use
mathematical models whose solutions are defined over time
discrete domains, so we will use discrete difference equations,
instead of first-order differential equations on a continuous
time domain, for describing the dynamics of the disease.
A classical review on the theoretical and applied scope of
first-order difference equations can be found in [60]. A didactic
introduction to the study of these equations appears, for
instance, in [61].

The standard way of obtaining a difference equation from a
continuous one is through the transformation:

N(t)→ Ni,
dN
dt
→

Ni+1 −Ni

h
, (12)

where i represents the i-th value of the time series of n0 length
{Ni}

n0
i=1 and h is the time step between recorded values (we are

assuming that it is constant). The next steps are

1. The time series
{
N0

i

}n0

i=1
is averaged with a 7 day long

moving window, resulting in the time series {Ni}
n
i=1,

where n = n0 − 6. This smoothing has the effect of
eliminating factors like delays in reporting due to the
accumulation of unreported cases. This kind of window
averaging has been used before in COVID-19 literature
[62].

2. From the time series {Ni}
n
i=1 the first n1 elements are used

to train each model (calibration period) and form the list
of pairs {(Ni,Ni+1)}n1−1

i=1 .

3. The list of pairs is fitted to the model Y = X + hgΠ(X, i),
by using the function NonlinearModelFit from the
software Wolfram Mathematica. From here we obtain
the optimal values of the parameters and store them as
components of the optimal parameters vector Π⋆.

4. The predicted time series
{
N⋆i

}n

i=1
is computed through

the RecurrenceTable function using the optimal values
Π⋆ and N⋆1 = N1.

X. APPENDIX III: OPTIMAL VALUES FOR THE
PARAMETERS FOR SOME COUNTRIES.

Palau:

Model r K A p
Smith-Birch 0.33 3082.82 1.43 −

Smith-Birch A 0.29 1.65 · 106 6.07 1.80

Cambodia:

Model r K A p
Smith-Birch 1.67 13399.3 599.63 −

Smith-Birch B 8.82 1.37 · 1015 1.81 · 1011 0.23
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The development of mathematical models to simulate biological
processes is essential for understanding the complexity of living
systems, allowing for predictions and virtual experiments that
would be difficult to carry out under real conditions. In this work,
we present a mathematical model to simulate the process of
apoptosis or programmed cell death, using the Gillespie algorithm.
Additionally, an optimization of this model is proposed, which
reduces computation time and enables the model to simulate
apoptosis in the cells of a tumor under topical treatment. Results
are also presented demonstrating that both models are equivalent.
The optimization reduced the execution time of the simulation by two
days.

El desarrollo de modelos matemáticos para simular procesos
biológicos es fundamental para comprender la complejidad de
los sistemas vivos, permitiendo hacer predicciones y realizar
experimentos virtuales que serı́an difı́ciles de llevar a cabo en
condiciones reales. En el presente trabajo presentamos un modelo
matemático para simular el proceso de apoptosis o muerte
programada en una célula, utilizando el algoritmo de Gillespie. Se
propone además, una optimización de este modelo, que permite
disminuir el tiempo de cálculo y utilizar el modelo para simular la
apoptosis en las células de un tejido tumoral que fue sometido
a un tratamiento tópico. Se presentan además resultados que
demuestran que ambos modelos son equivalentes. La optimización
permitió disminuir el tiempo de ejecución de la simulación en dos
dı́as.

Keywords: Stochastic models (modelos estocásticos); Complex systems (sistemas complejos); Computer modeling (modelado
computacional); Monte Carlo methods (métodos de Monte Carlo); Systems biology (biologı́a de sistemas).

I. INTRODUCTION

Apoptosis, or programmed cell death, is a vital biological
process that facilitates the controlled elimination of
unnecessary or damaged cells. This mechanism plays a crucial
role in maintaining a stable internal environment, even in the
face of external changes, and ensures the proper functioning
of the tissues. Dysregulation of apoptosis is associated with
various diseases, particularly neurodegenerative disorders
and cancer. In cancer, malignant cells often develop the ability
to evade apoptosis, allowing them to survive and proliferate
uncontrollably. Understanding the complex mechanisms that
govern apoptosis and its disruptions is essential to develop
targeted therapies. These therapies aim to reactivate apoptotic
pathways, promoting the selective death of cancer cells while
minimizing damage to normal tissues, ultimately enhancing
the efficacy of treatment and improving patient outcomes
[1–7].

Given the high costs associated with developing less
invasive and more effective treatments, mathematical
modeling of apoptosis presents a promising tool to increase
our understanding of this cellular process. Specifically,
computational algorithms that efficiently simulate all
biochemical interactions within cells can provide valuable
insights into the behavior of cancer and other diseases.
Using these models, researchers can better predict outcomes
and tailor therapies to individual patient needs. Various

mathematical models used to simulate apoptosis are based
on different approaches, including agent-based models [8–10],
Boolean networks [11,12] , differential equations [14–16], and
stochastic methods grounded in Monte Carlo simulations
using their own algorithms or the Gillespie algorithm [17–19].

In the study of physical systems where randomness
is fundamental, traditional deterministic methods often
prove insufficient. In these cases, the Gillespie algorithm,
originally developed to model stochastic chemical reactions,
becomes highly relevant in physics. This algorithm enables
accurate simulation of discrete, random processes over
time, including phenomena such as particle diffusion [20]
, molecular population dynamics [21], and the evolution
of non-equilibrium systems. Its versatility makes it a
powerful tool in fields like statistical physics, biophysics, and
materials science, especially when microscopic fluctuations
have significant macroscopic consequences.

In this work, we present a mathematical model of cell
death by apoptosis that incorporates the internal dynamics of
biochemical species within the cell. In addition, we introduce
an optimized version of the model, demonstrating results that
validate its accuracy and equivalence. We apply this enhanced
model to simulate apoptosis in cells of an epithelial tumor
undergoing topical treatment and present the results of these
simulations.
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II. METHODS

II.1. Apoptosis model

The activation of the intrinsic pathway of apoptosis illustrated
in Figure 1. This process begins with the permeabilization of
the mitochondria, which leads to the release of cytochrome
C (CytC) into the cytoplasm. The regulation of mitochondrial
membrane permeabilization involves the Bcl-2 protein family,
which can promote or inhibit apoptosis by directly influencing
channels in the outer mitochondrial membrane. Specifically,
Bax facilitates the formation of pores, while Bcl-2 acts to
inhibit it. Once cytochrome C is released into the cytoplasm,
it triggers the assembly of a multiprotein complex known
as the apoptosome, which subsequently activates the caspase
cascade via caspase-9 (C9), resulting in cell death by apoptosis.
Additionally, after membrane permeabilization, the SMAC
protein (Second Mitochondria-derived Activator of Caspases)
is released into the cytoplasm, where it binds to inhibitors
of apoptosis (XIAPs). This binding prevents XIAPs from
stopping the apoptotic process, allowing apoptosis to progress
[22].

Figure 1. Intrinsic pathway of apoptosis activation. Cell degradation by
apoptosis begins when Caspase 3 (C3) is activated. The intrinsic pathway is
shaded in blue and begins when pores open in the mitochondrial membrane,
and Cytochrome C (CytC) and SMASCs are released into the cytosol.
Cytochrome C forms a protein complex, Apoptosome, which activates C3
through C9. The Bcl-2 protein family regulates the formation of pores in the
mitochondrial membrane: Bax and/or Bak, represented by Bax in the model,
are responsible for the formation of the pores, while Bcl-2, Bcl-xL, or Mcl-1,
represented by Bcl-2, inhibit it.

The Gillespie algorithm was used to simulate cell death by
apoptosis. This is a stochastic simulation method designed
to model the time evolution of chemical reactions in systems
with a finite number of molecules. The algorithm captures
the inherent randomness of the reaction events by simulating
the waiting times between reactions and determining which
reaction occurs next on the basis of their rates. It operates
under the Markovian assumption, meaning that the future
state of the system depends only on its current state. Using

exponential distributions to model waiting times and random
sampling to select reactions, the Gillespie algorithm effectively
simulates complex biochemical processes [23, 24].

Table 1. Reactions that participate in the intrinsic pathway

No Reaction

1 C8 + Bid→ C8:Bid
2 C9 + Bid→ C9:Bid
3 Bid + Bax→ Bid:Bax
4 Bid:Bax→ tBid + Bax
5 tBid + Bax→ tBid:Bax
6 tBid:Bax→ tBid + Bax
7 Bid2 + Bax→ Bid2:Bax
8 Bid2:Bax→ Bid2 + Bax
9 Cytc + Apaf→ Apop
10 Apop + pC9→ Apoptosome:2pC9
11 Apoptosome:2pC9→ Apop + 2pC9
12 C9 + C9→ C9:C9
13 C9:C9→ C9 + C9
14 XIAP + Smac→ XIAP:Smac
15 XIAP:Smac + pC9→ XIAP:pC9
16 XIAP:pC9→ XIAP + pC9
17 Apaf + Apaf→ Apaf:Apaf
18 Apaf:Apaf→ Apaf + Apaf
19 Cytc + CytC→ Cytc:CytC
20 Smac→ Smac

The interactions within the intrinsic pathway of apoptosis, as
depicted in Figure 1, are represented through the reactions
listed in Table 1 and the corresponding molecules in Table 2.
The rate constants for these reactions (K) were obtained from
the literature [25,26]. These reactions take place inside the cell,
specifically in the cytoplasm, which is assigned a volume of
Ω = 1000µm3, reflecting the typical cytoplasmic volume. The
model assumes that a healthy cell maintains an equilibrium
among the concentrations of molecules such as Bid, Bax,
Bcl-2, and the complexes Bcl2:tBid and Bcl2:Bax. Under these
conditions, the levels of tBid and activated Bax are sufficiently
low to prevent apoptosis. However, if this equilibrium is
disrupted, the concentration of tBid rises, leading to cell death.
To simulate this scenario, the initial concentration of tBid is
set to a value greater than zero, and this value is proportional
to the apoptotic signal. The model also considers that when
the concentration of activated Bax reaches the threshold value
of 10nM, pores are formed in the mitochondrial membrane,
activating reactions 19 and 20 from Table 1. Finally, the cell
is considered dead when the Caspase-3 concentration reaches
10nM.

All simulations were developed in the C programming
language1 and executed on a personal Asus computer
equipped with an Intel® Celeron® CPU N3050, running at
1.60 GHz, with 4 GB of RAM and a 64-bit operating system.

II.2. Optimization of the apoptosis model

The simulation of apoptosis in a single cell takes
approximately 7 seconds on the computer used for these
calculations. To simulate apoptosis in a tissue composed of

1Although not publicly archived, the simulation code supporting this study will be made available to researchers upon formal request to the corresponding author
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millions of cells, it is crucial to minimize this time as much as
possible. This can be achieved either by using a more powerful
computer or by optimizing the model for greater efficiency.
Table 2. Molecules and initial concentrations used in the model of cell death
by apoptosis using the Gillespie algorithm.

Symbol Description X0 (nM)

C8 Active form of Caspase-8 0
Bid BH3-binding domain

death agonist
25

C8 : Bid Complex of C8 with Bid 0
C9 : Bid Complex of C9 with Bid 0

pC3 Procaspase-3, inactive 100
C8 : p3 Complex of Caspase-8

with procaspase-3
0

C3 Active form of Caspase-3 0
C9 : pC3 Complex of C9 with

procaspase-3
0

Apa f Activating Factor
(Apaf-1)

80

pC9 Inactive form of
Apoptosome-9

20

Apop Apoptosome complex 0
Apoptosome : 2pC9 Complex of Apoptosome

with 2 procaspase-9
0

C9 : C9 Complex of C9 with C9 0
XIAP : Smac X-linked Inhibitor of

Apoptosis
30

XIAP : pC9 Complex of XIAP with
procaspase-9

0

XIAP : C9 Complex of XIAP with
caspase-9

0

Apa f : Apa f Complex of Apaf-1 dimer 0
Cytc : CytC Cytochrome c inside the

mitochondria
50

Smac SMAC inside the
mitochondria

50

The reactions that lead to the permeabilization of the
mithochondrial membrane are more time consuming in the
simulation. For this reason, we propose to eliminate the
reactions [3−7] shown in Table 1 and replace them with a single
reaction. This new reaction has tBid and Bax as reactants, tBid
and activated Bax as products, and K as the rate constant of
the optimized reaction (Figure 2). The new rate constant was
chosen so that the time to permeabilize the membrane would
be the same for both models. We used the original apoptosis
model to determine the opening times of the mitochondrial
membrane (torg). Subsequently, using the optimized model,
we change the parameter K to obtain the opening time of the
membrane (ti) for each value of K. Finally, we selected K = Ki
that corresponded to the ti closest to torg.

The strength of the apoptotic signal is directly proportional
to the initial concentration of tBid, as previously discussed. In
contrast, the initial concentration of Bcl2 influences membrane
permeabilization but is not included in the reaction of the
optimized model. To address this limitation, we calculated
the values of K for various initial concentrations of these

molecules, denoted as [tBid0] and [Bcl20]. This dependence
requires the application of the previously described method
each time these initial concentrations change, which is
inefficient given our goal of applying this optimized model
to a heterogeneous epithelial cell tumor, where cells exhibit
varying initial concentrations of all molecules.

Figure 2. Reactions that permeabilize the mitochondrial membrane (left) and
the resulting reaction in the optimized model (right).

To improve efficiency, we develop a matrix of K values
for every combination of [tBid0] and [Bcl20]. We defined a
range for initial tBid concentrations from 25nM to 2510nM
with increments of approximately 38nM, and for initial
Bcl2 concentrations from 40nM to 60nM with increments
of 5nM. Consequently, we calculated the values of K for
each combination, which resulted in a matrix with 67 rows
and 21 columns. This matrix can be used in simulations
involving multiple cells with different initial concentrations
of the aforementioned molecules.

II.3. Simulation of apoptosis in an epithelial tumor

Using the optimized model of apoptosis, we successfully
simulated an epithelial tumor after topical treatment. The
tumor is modeled as a three-dimensional matrix of m layers
deep and in each layer n × n cells. In this case, we modeled 6
layers of 100 × 100 cells each.

This model operates under the assumption that drug
concentration decreases exponentially with increasing tumor
depth. Since the initial concentration of tBid is directly related
to the apoptotic signal, we modeled a tumor with a depth of
1mm, where the initial concentration of tBid ([tBid0]) decreases
exponentially with depth. To incorporate cellular variability,
we assumed that the initial levels of the relevant proteins
differ between individual cells. The initial concentrations of
these proteins were uniformly distributed around their mean
values (see Table 2), with a variance of 20 %.

These simulations were performed on an Intel i7 computer
with 12 cores and 16GB of RAM.

III. RESULTS AND DISCUSSION

III.1. Optimization of mithochondrial membrane permeabilization
reactions
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Figure 3. Cell survival matrices at different tumor depths after topical treatment of an epithelial tumor. The tumor is modeled as a three-dimensional matrix
consisting of six layers, each containing 100× 100 cells. Cell death by apoptosis was simulated: cells that died within 3500 seconds after treatment are shown
in red, while surviving cells are shown in white.

In the apoptosis model, the mitochondrial membrane becomes
permeabilized, leading to the release of CytC and SMASCs
into the cytosol when the concentration of activated Bax
reaches 10nM, approximately 12040 molecules. To validate
the functionality of the optimized model, we compare the
time at which activated Bax reaches this threshold. Figure
4 shows only the first 200 seconds of the simulation in
which the membrane opening occurred to demonstrate that
in both models the time at which activated Bax reaches the
membrane opening threshold concentration is quite similar,
indicating that the two models are equivalent and confirming
the precision of the determined value of K.

In the apoptosis model, mitochondrial membrane
permeabilization occurs when activated Bax concentration
reaches 10 nM (∼ 12040 molecules), triggering the release
of cytochrome c (CytC) and SMASCs into the cytosol. To
validate the optimized model’s functionality, we compared
the time at which activated Bax reaches this threshold. Figure
4 displays the initial 200s of the simulations, demonstrating
comparable threshold attainment times in both models. This
kinetic equivalence confirms the consistency of the model and
validates the determined parameter K.

III.2. Influence of Initial Concentrations of Bcl-2 and tBid on the
Kinetic Constant of the reaction

We calculated K values for various initial concentrations of
tBid and Bcl-2. Figure 5 presents the density plot of the
resulting matrix. In particular, when the initial concentration

of tBid exceeds 137nM, K becomes independent of the initial
concentration of Bcl-2.

We initially performed a tumor simulation on a small scale. In
this model, the tumor is represented as a three-dimensional
array consisting of 67 layers, each layer corresponding to a
specific value of [tBid0] in the K matrix calculated previously.
Within each layer, we simulate cell death by apoptosis for 100
cells arranged in a 10 x 10 grid.
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Figure 4. Activated Bax concentration as a function of time for both models.
The black dashed line at 10 nM indicates that the times of mitochondrial
membrane permeabilization are similar.

The initial concentrations of the other proteins involved in the
apoptosis process varied around the mean values presented in
Table 2. For the simulation, we assumed that if a cell did not
undergo apoptosis within 3500 seconds, which is the mean
time of cell death by apoptosis, it would continue to survive.
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This approach allowed us to calculate the number of dead
cells in each layer, as illustrated in Figure 6.
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Figure 5. Density plot of the kinetic constant K as a function of the initial
concentrations of tBid and Bcl-2 in logarithmic scale.

In particular, in the upper layers of the tumor (where
[tBid0] > 251nm, corresponding to Z < 0.5 mm), the number
of dead cells does not increase as [tBid0] increases. This
result can be explained by considering that, when the initial
concentration of tBid is very high, the likelihood of the
optimized reaction occurring is also significantly elevated
in the Gillespie algorithm. Consequently, until Bax is fully
consumed, none of the other reactions in the model that
contribute to increasing Caspase-3 levels and subsequent cell
death takes place (see Table 2, references [26–29],).
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Figure 6. Number of dead cells as a function of tBid initial concentration.
In blue, the functional range in which [tBid0] is proportional to the apoptotic
signal.

To maintain the initial concentration of tBid proportional
to the strength of the apoptotic signal, we selected initial
concentrations in the range of 61 to 251nM for our subsequent
simulations. By narrowing the range of [tBid0] values, we
refined the K matrix used in the model, as shown in Figure
7. This adjustment highlights that at low concentrations
of tBid, variations in Bcl-2 become increasingly influential.
This effect is attributed to the distinct propermeabilizing
and antipermeabilizing functions that each protein performs,
respectively.

Figure 7. Density plot of the kinetic constant K as a function of the initial
concentrations of tBid and Bcl-2.

III.3. Simulation of cell death by apoptosis in tumor tissue

Using the results of the previous section, we simulated an
epithelial tumor treated with a topical drug to investigate
how the number of cells undergoing apoptosis changes as a
function of depth and the initial concentration of tBid. The
tumor is modeled as a three-dimensional matrix consisting
of six layers, each containing a 100 x 100 grid of cells. We
assume that the average initial concentration of tBid in each
of the six layers decreases exponentially. This approach is
supported by experimental evidence that shows that topical
drug application enhances absorption in the upper layers of
the skin [30, 31].

In the simulations, a cell was considered to undergo apoptosis
if death occurred before 3500 seconds. In this case, it was
assigned a value of 1. In contrast, if the cell did not die, it
was assigned a value of 0. The density plots representing
the matrices at various values of Z are presented in Figure
3. Dead cells are white and those that survive are red. It
can be seen that as the depth increases, the density of cells
that undergo apoptosis decreases. This result is in agreement
with experimental data that demonstrate that some topical
treatments are effective only for superficial tumors [32].
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Figure 8. Percentage of dead cells versus tumor depth (Z). The tumor is
modeled as a three-dimensional matrix consisting of six layers, each with
100×100 cells. A cell was considered apoptotic if it died within 3,500 seconds
of treatment. For each layer, the percentage of dead cells was calculated.

To get an idea of the exact number of cells that died as a
function of Z, we show these results in Figure 8. Almost 75 % of
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the cells near the surface died from apoptosis and this number
decreases as the depth of the tumor increases. At 1 mm depth,
more than 50 % cells survive.

III.4. Simulation time versus optimization

Figure 9 compares the simulation times for both models in
simulations with different initial concentrations of Bcl-2, while
keeping the initial concentrations of other molecules constant.
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Figure 9. Simulation time as a function of the initial concentration of Bcl-2 for
the apoptosis model that includes all reactions of membrane permeabilization
(original) and the one that includes only one reaction (optimized).

The recorded time reflects how long each simulation
takes to complete the membrane permeabilization process,
which involves the set of simplified reactions. This time
represents how long both simulations take to complete the
permeabilization process of the membrane, where the set
of reactions that we simplify participate. We can see that
by increasing the initial concentration of Bcl-2, keeping
[tBid0] constant, the time of the original model increases,
while in the optimized model it is practically independent
of this variable. In particular, at high initial concentrations
of Bcl-2, the advantages of our optimization become even
more pronounced. Given that this model will be applied
to thousands of cells within tumor tissue, optimization is
significantly improved.

In Tables 3 and 4 we show a comparison of simulation
times for various initial concentrations of tBid and Bcl-2. The
concentration values in the tables were selected as the limits
used in our tumor simulations.

Table 3. Simulation time for the unoptimized model (s)

Concentration tBid0 = 62.7 nM tBid0 = 250.8 nM

Bcl2o = 40nM 3.90 3.515
Bcl2o = 60nM 6.626 4.406

Table 4. Simulation time for the optimized model (s)

Concentration tBid0 = 62.7 nM tBid0 = 250.8 nM

Bcl2o = 40nM 0.24861 0.134928
Bcl2o = 60nM 0.341222 0.144051

These results demonstrate that the performance of the
optimized model is superior. To help the reader better

understand the machine time saved with the proposed
optimization, we present a straightforward calculation. We
simulate 10000 cells across 6 layers. If each cell requires 6.626s
to open the membrane, representing the maximum possible
time, the total computational time would be 6 × 10000 ×
6.626 = 397560 s, which is equivalent to approximately 4.5
days of simulation. In contrast, using the optimized model,
the maximum simulation time would be 6 × 10000 × 0.341 =
20460 s, or about 5.6 hours. This significant reduction in
machine time demonstrates that our optimization represents
a significant advance in the study of cell death by apoptosis.

IV. CONCLUSION

In this study, we have developed a model that qualitatively
simulates cell death by apoptosis, capturing the timing
and concentration dynamics of key molecules involved in
the intrinsic pathways. Our optimization of the equations
governing mitochondrial membrane permeabilization has
significantly reduced simulation times without compromising
the accuracy of the cell death timing or the qualitative
behavior of the involved molecules. The findings regarding
the independence of K from Bcl-2 concentrations at high
tBid levels provide valuable insights into the complex
interactions within apoptotic signaling pathways. The
substantial reduction in computation time enhances the
feasibility of applying our model to simulate apoptosis in
tissues containing large numbers of cells, making it a powerful
tool for studying cell death in various biological contexts,
particularly in tumor environments. Our model not only
contributes to a deeper understanding of apoptosis but also
lays the groundwork for future research aimed at exploring
therapeutic strategies that target apoptotic pathways. We
believe that this work will facilitate further advancements
in computational biology and cancer research, ultimately
leading to improved treatment approaches for diseases
characterized by dysregulated apoptosis.

V. ACKNOWLEDGEMENTS

REFERENCES

[1] S. Kumari, R. Dhapola, D. H. Reddy, Apoptosis 28, 943
(2023).

[2] V. K. Sharma, T. G. Singh, S. Singh, N. Garg, S. Dhiman,
Neurochem. Res. 46, 3103 (2021).

[3] C. Hu, X. Zhang, N. Zhang, W.-Y. Wei, L.-L. Li, Z.-G.
Ma, Q.-Z. Tang, Clin. Transl. Med. 10, e124 (2020).

[4] K. Tsuchiya, Microbiol. Immunol. 64, 252 (2020).
[5] B. A. Carneiro, W. S. El-Deiry, Nat. Rev. Clin. Oncol. 17,

395 (2020).
[6] O. Morana, W. Wood, C. D. Gregory, Int. J. Mol. Sci. 23,

1328 (2022).
[7] M. Jiang, L. Qi, L. Li, Y. Li, Cell Death Discov. 6, 112

(2020).
[8] B. Roche, J. M. Drake, P. Rohani, BMC Bioinform. 12, 1

(2011).
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The growing demand for activated carbons has driven
the development of inexpensive and easily applicable
experimental methods for evaluating their behavior. One
promising avenue, for the obtaining of activated carbon, lies
in utilizing agro-industrial residues. This approach offers a
sustainable path to minimize environmental impact while
producing high-value materials from affordable sources [1,2].

This note presents a simple experimental method for
determining four electromechanical parameters of powdered
activated carbon samples. These parameters are then
used to derive a mathematical expression describing the
dependence of sample conductivity on applied uniaxial
pressure. Furthermore, the note shows evidence of a certain
correlation between some of these parameters and the texture
of the activated carbon samples.

For electrical characterization of the activated carbon a
two-point method was used. A known mass of material was
compacted uniaxially (∼ 50 mg) under increasing pressures
within an insulating matrix using piston and base electrodes.
An ohmmeter was used to measure the electrical resistance
across the electrodes at 29 °C [3]. This study focuses on the
ratio of density to resistivity ρm/ρ, a parameter that can be
determined using the expression:

ρm

ρ
=

m
R · A2 (1)

Here m represents the mass of the carbonaceous material,
R is the electrical resistance and A is the cross-sectional
area. This ratio exhibits a linear relationship with uniaxial
pressure applied to the carbonaceous powder, particularly in
the range of 20-240 MPa. Moreover, this parameter offers the
advantage of being independent of uncertainties associated
with measuring the distance between contacts.

At this point, the linear relationship between the parameter
and uniaxial pressure, focusing on carbonaceous materials
derived from various sources is explored. Figure 1 illustrates
this linear dependence. Let us see first the obtention of the
carbonaceous materials derived from sugar cane bagasse. In

this case three samples were prepared. Two were treated with
acid and base, respectively, while one remained untreated.
Treatments involved a 24-hour impregnation in 0.5 mol/L
activating agent solution, followed by washing with distilled
water and drying at 105 °C. All samples were then subjected to
pyrolysis at 850 °C in an argon flux of 5 mL/min for 30 minutes
and cooled down to room temperature in the same argon
flux. The resulting material from the pyrolysis was washed
in deionized water using ultrasound with a power of 40 W
during 5 minutes. Despite these differences in treatment, the
parameter consistently displays a linear behavior with applied
uniaxial pressure. Similar linear behavior was also observed
in carbonaceous materials derived from other agro-industrial
residuals, namely coconut shells, peanut hulls, and rice husks
(see Figure 1). These materials were first transformed into
black carbon through pyrolysis at 600 °C in a nitrogen flux of 80
mL/min. Subsequently, all carbons were physically activated
using steam at 850 °C for 30 minutes. As last step, the resulting
material was cooled down until ambient in the same nitrogen
flux. The studied powders had similar particle size; it was
less than 63 in all samples. Linear least-squares fitting of
the experimental data yielded high correlation coefficients
(r2 > 0.99), confirming a strong linear relationship in all cases.
Uncertainties in the intercept and slope were below 4 %.

On the other hand, the effective-medium approximation
(EMA) provides a framework for understanding the effective
conductivity σe, of porous materials, such as those studied
here. Equation (2) describes the effective conductivity of the
porous material, where represents the conductivity of the
carbonaceous matrix and c is the pores concentration [4]:

σe = σB

(
1 −

3
2

c
)

(2)

Here c < 3/2 , indicating that the percolation threshold has
been exceeded.

The sample volume exhibits an exponential dependence on
the uniaxial pressure, as described by (3):

V = A1e−β1P (3)
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where P represents the uniaxial pressure, A1 is the volume at
zero pressure and β1 is the compressibility coefficient [5].

Experimental data presented in Figure 1 can be described by
the following expression:

ρm

ρ
(P) = A2 + β2P (4)

Combining (3) and (4) allows us to express the sample
electrical conductivity as a function of pressure, as shown
in equation (5):

σe =
1
m

(
A2 + β2P

)
A1e−β1P (5)

This relationship suggests that uniaxial pressure has two
opposing effects on the electrical conductivity of the sample.
At lower pressures, the electrical conductivity increases with
pressure due to improved contact between the grains. Higher
pressures, however, lead to grain fracture and consequently a
decrease in conductivity.

Figure 1. ρm
ρ (P) dependence of different carbonaceous materials derived

from sugar cane bagasse and others agro-industrial residuals. The continue
lines represent the linear fittings of the experimental data obtained by least
squares method.

Figure 2 presents both experimental data and theoretical
calculations, using (5), for the dependence of effective
conductivity on uniaxial pressure. The inset illustrates the
procedure for determining β1 and A1 starting from the linear
behavior of ln(V) as a function of uniaxial pressure. Also,
this figure shows increasing uncertainty with pressure in
the experimental data for coconut shell and peanut hull
samples. A few data points (two or three per sample) deviate
significantly from (5), even accounting for experimental
uncertainty. This deviation is likely due to the empirical nature
of (5) and uncertainties in parameters A1, β1, A2, and β2 (below
1 % and 5 %, respectively, for A1 and β1). The equation (5) also

predicts a maximum of σe(P) at Pmax =
1
β1
−

A2

β2
, which can be

observed, for the sample derived from peanut hulls, into the
pressure range of the measure.

Equation (6) enables the determination of the electrical
conductivity of the carbonaceous material, σB , independent of
pore effects. This aspect is crucial for evaluating the suitability
of activated carbons for electrical applications:

σe (P→ 0) =
A1A2

m
= σB

(
1 −

3
2

Vp

A1

)
(6)

Here Vp represents the pore volume linked to meso and
macropores.

Figure 2. Effective conductivity as a function of the uniaxial pressure for
carbonaceous materials obtained from the biomass described in the legend.
The solid lines represent the conductivity values calculated using equation
(5). The inset depicts the linear relationship between natural logarithm of
volume and pressure, which confirms Equation (3).The error bars represent
the experimental uncertainties.

Due to the small size of micropores, they are considered as
part of the carbonaceous matrix. The pore volume, V∗p, is
usually determined by means of adsorption and desorption
of nitrogen (N2) by the carbonaceous material and it is given
in cm3/g. However, in (6), Vp = mV∗p, where m = 50 mg . In
addition, the mathematical expression P→ 0 refers the limit of
low pressures, where the linear and exponential dependencies
on P are satisfied.

Table I provides an example of applying (6) to samples
with effective electrical conductivity as a function of uniaxial
pressure, as depicted in Figure 2. The results indicate that
the sample derived from coconut shells exhibits the highest
value of σB, followed by the sample derived from peanut
hulls. The sample obtained from rice husks demonstrates
the least desirable behavior due to its lowest value of σB.
This observation aligns with the presence of a significant
percentage of SiO2 in the carbonaceous materials obtained
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from rice husks [2]. Also, it is easy of verifying for all samples
Vp

A1
< 0.16 that satisfies the condition predicted by EMA.

Table 1. Vp, A1, A2, and σB of the samples presented in Figure 2.

Biomass Vp
[
cm3] A1

[
cm3] A2

[ g
Ω cm4

]
σe

[ 1
Ω cm

]
Coconut shells 0.0104 0.068 2.48 4.39

Peanut hulls 0.0056 0.049 1.64 1.93

Rice husks 0.0035 0.048 0.110 0.12

In summary, this study has successfully derived an expression
for the dependence of effective conductivity, σe, on uniaxial
pressure, P, leveraging the linear relationship between the
product of density and conductivity, ρmσe, and pressure,
alongside the established relationship between sample
volume and applied uniaxial pressure. The four parameters
in (5) provide a unique ”fingerprint”for characterizing the
electro-mechanical properties of activated carbons. This
finding suggests that the methodology employed in this

study holds promise for evaluating the textural properties
of activated carbons, serving as a valuable preliminary
assessment tool. A series of ongoing research projects aim
to further explore this approach, potentially leading to a more
comprehensive understanding of the relationship between
texture and electro-mechanical behavior in activated carbons.
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I. INTRODUCTION

Lead-free ferroelectric materials have been extensively
studied as a quest to replace lead-based ferroelectric
commonly used in engineering systems such as actuators,
batteries, sonars, sensors, electromechanic engines, etc [1–3].
Numerous authors have conducted research on various
aspects of the ferroelectric, dielectric and piezoelectric
properties. However, there not many studies specifically
addressing its pyroelectric behavior [4, 5].

The (Bi0.5Na0.5)1-xBaxTiO3 (BNT-xBT) system has been
reported as one of the most promising materials to
replace the lead-based systems, receiving a growing interest
from the scientific society [2, 6–10], but with only a few
publications regarding its pyroelectric behavior [6–8]. The
main pyroelectric investigations of the BNT-xBT have been
centered on the morphotropic phase boundary (MPB), around
x = 0.06 at %, and have involved doping with elements such
as tantalum, zirconium and manganese in order to enhance
the pyroelectric properties [6–8].

Recently, (Bi0.5Na0.5)1-xBaxTiO3 lead-free ferroelectric ceramics
(x= 0, 2, 5, 8, 10, 12, 16, 18 at %) were studied considering x-ray
diffraction, Raman spectroscopy, dielectric and piezoelectric
behavior [9, 10]. From these results, a new phase diagram
has been proposed considering a wider compositional range
than those reported in the literature, which offers new
insights for a better understanding on the features of
the phase diagram for the ceramic system [9]. Also, very
good piezoelectric parameters were reported for composition
showing tetragonal phases [10]. From this point of view,
the two highest barium concentrations have been selected
in order to evaluate the pyroelectric behavior in a wide
temperature range. It is known that depending on the
specific application, selecting an optimal pyroelectric material
becomes crucial to achieve maximum efficiency in pyroelectric
devices. In this sense, the evaluation of several parameters,

such as the figures of merit (FOMs) is very important [11],
which guide us toward the most suitable material for the
intended purpose. Generally, FOMs are described by four
characteristic parameters known as current responsivity (Fi),
voltage responsivity (FV), detectivity (FD) and the energy
harvesting figure of merit (FE), as expressed by the equations
(1) to (4), respectively [11, 12].

Fi =
p
ρCp

(1)

FV =
p

ρCpε0ε
(2)

FD =
p

ρCp
√
ε0ε tan δ

(3)

FE =
p2

ε0ε
(4)

Fi characterizes the maximum current that can be generated,
FV represents the maximum voltage output of the sample,
FD provides the voltage responsivity with the optimal
signal-to-noise ratio and FE characterizes the capacity for
energy harvesting from temperature change [13, 14]. The
p parameter corresponds to the pyroelectric coefficient, ρ
represents the density, Cp is the specific heat at constant
pressure, ε denotes the dielectric permittivity, and tan δ
represents the dielectric losses of the material [15].

In this context, the objective of the present paper is to evaluate
the pyroelectric response and the corresponding figures of
merit for (Bi0.5Na0.5)1-xBaxTiO3 (x=16 and 18 at %) ceramic
system.
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Figure 1. Temperature dependence of (a) pyroelectric current (ip) and (b) remnant polarization (P), for the studied samples.

Figure 2. Temperature dependence of the FOMs for the studied samples.

II. EXPERIMENTAL PROCEDURE

(Bi0.5Na0.5)1-xBaxTiO3 ceramics, for x = 16 and 18 at %, were
prepared by using the solid-state reaction sintering method.
High purity oxides (Bi2O3: 99.999 %; Ba2CO3: 99.36 %; Ti2O2:
98 %; Na2CO3: 99.5 %) were mixed and manually milled using
a mortar for 2 hours. The samples were calcinated at 800 °C for
1 hour in air atmosphere. The powders were milled again and
pressed as thin discs by using 2 ton/cm2. The disc ceramics
were sintered at 1150 °C for 2 hours in an air atmosphere,
using a covered platinum crucible to prevent bismuth loss
through evaporation. The samples were hereafter labeled as
BNT-16BT and BNT-18BT, respectively. The structural analysis
confirmed the formation of a pure perovskite structure
without additional spurious phases, showing a tetragonal
phase [9].

Silver paint electrodes were applied on the opposite parallel
surfaces of disk-shaped ceramics samples by a heat treatment
at 590 °C. The polarization process was carried out at 100
°C, applying an electric field of 2 kV/mm. Once polarized the
samples, the pyroelectric current (ip) was directly measured
through the static method using a Keithley 6485 Picoammeter
covering a wide temperature range (25 – 210 °C). The
remnant polarization (P) and the pyroelectric coefficient were
calculated from the temperature dependence of ip [16]. The
temperature dependence of the pyroelectric figures of merit
(FOMs) were obtained by using Eqs. (1), (2), (3) and (4), as
well as the dielectric parameters reported elsewhere [9].

III. RESULTS AND CONCLUSIONS

Figure 1 shows the temperature dependence of the
pyroelectric current (ip) and the remnant polarization (P) for
the studied compositions. A typical peak for the pyroelectric
current around 180 - 200 °C has been obtained for both
samples, with the corresponding decreasing to zero at the
reported depolarization temperature (Td) [9]. It is important
to note the high thermal stability through the studied
temperature range, which is a relevant behavior to be consider
for applications involving high-temperature sensors [17].

Figure 2 shows the temperature dependence for the
corresponding FOMs, given by equations (1), (2) and (3). The
behavior is similar to that obtained for the pyroelectric current
(Td) [9], with well-defined peaks below the depolarization
temperature and also high thermal stability. The maximum
obtained values for the FOMs, located near around this
critical temperature, are higher than those for other reported
materials, such as BaCe0.12Ti0.88O3 [18], Ba0.85Ca0.15Zr0.1Ti0.9O3
[19] and PbNb0.02(Zr0.95Ti0.05)0.98O3 [20], which were even
polarized at higher electric fields than the studied ceramics.

Table 1 summarizes the obtained values of the FOMs from
Figure 2, at room temperature, of the studied samples and
other ceramic systems reported in the literature. It can be
observed that Fi values of both studied samples are quite
modest in comparison with the literature average, which can
be attributed to the low p values obtained. The BNT-18BT
shows better results than those of BNT-16BT, being the FV
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parameter which exhibit the best result, representing the
maximum voltage output that can be obtained from the
sample.

The most relevant result which has been obtained in
the present study corresponds to the FE parameter, in
particular for BNT-18BT. Figure 3 shows this FOM at room
temperature for several reported materials, included the
studied compositions, suggesting the suitability of BNT-18BT
for pyroelectric energy harvesting (PyEH) [28]. This high FE
value is mostly attributed to the low permittivity value of this
sample at room temperature [10].

Table 1. FOMs at room temperature for the studied compositions and other
reported ceramic systems.

Materials Fi (10−9 mV) FV (10−2 m2/C) FD (µPa−0.5)

BNT-16BT 0.02 0.42 1.5
BNT-18BT 0.07 1.8 6.8
BCT 21 [21] 1.71 0.9 -
BNT-BT-ST [22] - 1.8 5.89
BTS [23] 1.03 0.2 -
BCSZT [5] 3.86 1.7 28.4
BNKLBTT [24] 2.21 3.0 14.8
BNT-BTZ [7] 2.03 2.2 10.5
PLZT-25 [25] 1.10 4.4 50.1
PLZT-50 [25] 0.12 0.16 1.9
PLZT 4/86/14 [26] 2.90 4.8 35.4
PLZT-0.11Cr [27] 1.55 1.16 8.3

Figure 3. FE values at room temperature for the studied samples, BNT-16BT
and BNT-18BT, and other previous reported materials. PLZT-25 [25],
BCSZT [5], BCSTSN [29], LNO3 [15], PLZT-0.11Cr [27], PMN-0.25PT [12],
BNT-BT-ST2 [22], BSZT15 [30], MNBT-BT [001] [31], BTS10 [32], BSZT5
[30], BST8 [32].

From this point of view and considering the previous
piezoelectric results [10] for the studied BNT-18BT, this
compound emerges as an excellent candidate for energy
harvesting applications based in the pyroelectric, piezoelectric
effect or their combination.
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Peláiz-Barranco and J. D. S. Guerra, J. Appl. Phys. 135,
164106 (2024).

[10] A. C. Iglesias-Jaime, T. Yang. A. Peláiz-Barranco and J.
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The natural radionuclides 238U, 232Th and 40K are called
primordial radionuclides, because they are present on the
Earth since the creation of the planet. The nonuniform
distribution of natural radionuclides has been observed in
various environmental matrices such as soil, sand, water,
air, sediment, etc. Natural radionuclides often reach these
matrices by the weathering process of rocks and other
materials.

The purpose of the present study was to determine the levels
of natural radioactivity (226Ra, 232Th and 40K) on the sands of
some Cuban white sand beaches (Fig. 1), in order to assess the
potential radiological risks to their users.

Figure 1. Location of the studied sand beaches

Beach sand samples, which reached equilibrium at the end
of a time of one month, were counted for 48 hours on a
well calibrated HPGe gamma spectrometer at the Center
for Environmental Studies at Cienfuegos, Cuba [1]. In the
study, while 40K activity concentrations were determined
directly based on 1460 keV gamma ray, the 238U and 232Th
activity concentrations were indirectly determined from the
daughter nuclides of these radionuclides. The 214Pb or 214Bi
activity concentrations of the samples need to be accepted
as a measure of the 226Ra content rather than 238U itself [2] .
That is, in the analysis of the samples, for 226Ra activity, 214Bi’s
609 keV and 214Pb’s 352 keV gamma transitions were used,
while for 232Th activity, 228Ac’s 911 keV gamma transition
was used. The activity concentrations of natural radionuclides

for beach sand samples under study, and some reported
worldwide, are presented in Table 1. The measured activities
are directly related to natural gamma radiation and represent
the geological background of the rock settings. The only
exception is the activity of 232Th measured on the beach sand
of La Coloma, with a mean activity slightly higher than the
mean concentration of 232Th worldwide (30 Bq · kg−1 [3]).

Table 1. Activity concentrations of 226Ra, 232Th and 40K (main ± SD, in
Bq · kg−1) in Cuban and worldwide beach sands.

Beach 226Ra 232Th 40K

La Coloma, Cuba 19 ± 1 37 ± 1 40 ± 8

Cajio, Cuba 6 ± 1 6 ± 3 47 ± 7

Rancho Luna, Cuba 4.5 ± 0.7 2.6 ± 0.5 274 ± 12

Cayo Coco, Cuba 12 ± 1 4.6 ± 0.6 10.6 ± 0.7

Cayo Guillermo, Cuba 5.7±0.7 2.1±0.4 135±8

Guardalavaca, Cuba 2.1±0.7 1.5±0.4 15±1

Xiamen, China [4] 15±4 11±8 396±75

Zonguldak, Turkey [5] 23±1 20±2 245±14

Ao Phrao, Thailand [6] 11±2 6.4±0.8 174±67

Tamil Nadu, India [7] 13±4 6±1 379±40

El Ingles, Spain [8] 23±1 31±2 726±32

Penang, Malaysia [9] 31±8 36±6 369±17

UNSCEAR [3] 35 30 400

Radiological parameters such as radium equivalent activity
(Raeq), absorbed dose rate (DR) and gamma index (Iγ) were
calculated (Table 2) using the following standard formulas:
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Raeq(Bq · kg−1) = CU + 1.43CTh + 0.0077CK (1)

DR(nGy · h−1) = 0.462CU + 0.604CTh + 0.0042CK (2)

Iγ =
CU

150
+

CTh

100
+

CK

1500
(3)

where, CU, CTh and CK, (given in Bq · kg−1), are the activity
concentrations of 238U, 232Th and 40K, respectively. The safety
value for this Iγ index is ≤ 2 [3].

Table 2. Radiological indexes.

Beach Raeq (Bq · kg−1) DR (nGy · h−1) Iγ

La Coloma, Cuba 72 33 0.52

Cajio, Cuba 15 8 0.13

Rancho Luna, Cuba 10 15 0.24

Cayo Coco, Cuba 19 9 0.13

Cayo Guillermo, Cuba 10 10 0.15

Guardalavaca, Cuba 4 3 0.04

Xiamen, China [4] 34 30 0.47

Zonguldak, Turkey [5] 53 33 0.52

Ao Phrao, Thailand [6] 21 16 0.25

Tamil Nadu, India [7] 24 26 0.40

El Ingles, Spain [8] 73 60 0.95

Penang, Malaysia [9] 85 52 0.81

World average [3] 81 59 2

The calculated Raeq values varied from 4 to 72 Bq · kg−1,
showing that all studied sands show activity lower than the
recommended safety limit. The dose rate varied from 3 to 33
nGy · h−1, all they are also lower than the worldwide average
value of 59 nGy · h−1.

Finally, the estimated values of gamma representative level
index ranged from 0.04 to 0.52, confirming that mean values
are lower than the recommended safety limits. We recommend
performing a similar study of beach sands from other
important Cuban resorts.
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La microscopı́a de barrido por efecto túnel constituye una
herramienta ampliamente utilizada en las investigaciones de
nanociencia y nanotecnologı́a. Esta técnica tiene la ventaja de
permitir estudiar las capas superficiales sin dañarlas o destruirlas
y de alcanzar la resolución atómica. Su sencillez en comparación
con otros instrumentos cientı́ficos ha permitido que diferentes
laboratorios construyan sus propios microscopios. Se presenta aquı́
cómo fue construido el STM de la Universidad de La Habana y cómo
se alcanzó con él por primera vez en Cuba la resolución atómica.

Scanning tunneling microscopy is a widely used tool in nanoscience
and nanotechnology research. This technique has the advantage of
allowing the study of surface layers without damaging or destroying
them and of achieving atomic resolution. Its simplicity compared
to other scientific instruments has allowed different laboratories to
build their own microscopes. Here we present how the STM at the
University of Havana was built and how it achieved atomic resolution
for the first time in Cuba.

Keywords: Laboratory experiments and apparatus (Experimentos y aparatos de laboratorio); History of science (Historia de la ciencia);
Scanning tunneling microscopes (Microscopios de barrido de efecto túnel).

I. INTRODUCCIÓN

Una de las herramientas más empleadas por la nanociencia
es el microscopio de barrido por efecto túnel (STM, del
inglés: scanning tunneling microscope). Este microscopio es
un resultado de la aplicación práctica del efecto túnel de la
mecánica cuántica en la investigación cientı́fica.

El STM permite la obtención de imágenes topográficas de
una superficie, la manipulación de átomos y moléculas,
y brinda la posibilidad de caracterizar sus propiedades
eléctricas locales. Con él podemos obtener información de
la densidad electrónica de los orbitales moleculares incluso a
nivel de moléculas individuales y estudiar los mecanismos de
transporte de carga a través de las moléculas.

El STM ha jugado un papel primordial en el estudio
de las monocapas autoensambladas (SAMs, del inglés:
self–assembled monolayers) mediante el análisis de la
orientación espacial y conformación de las moléculas
individuales sobre los sustratos.

Trabajando con el STM a resolución atómica es posible
obtener información estructural detallada de las interacciones
atómicas en el sistema sustrato–adsorbato, haciendo
posible fabricar estructuras más sofisticadas con potenciales
aplicaciones en dispositivos electrónicos moleculares como
alambres, conmutadores y diodos.

Aquı́ ofrecemos algunos datos sobre la construccion del
primer STM cubano, que permitio obtener las primeras
imágenes de resolución atómica en nuestro paı́s.

II. EL MICROSCOPIO DE BARRIDO POR EFECTO TÚNEL

Los antecedentes STM se remontan a noviembre de 1926,
cuando Friedrich Hund envió para su publicación un artı́culo
en el cual resolvı́a la ecuación de Schrödinger para el caso
de un electrón que se mueve entre dos pozos de potencial
separados por una barrera [1]. Hund encontró que existı́a una
probabilidad de que bajo determinadas condiciones la función
de onda del electrón atravesara la barrera y pudiese pasar al
pozo vecino [1]. En éste, y una serie de artı́culos sucesivos
publicados en 1927, Hund demostró los casos en que puede
producirse este fenómeno y lo aplicó a la interpretación de
espectros moleculares [2]. Trabajando independientemente,
en un artı́culo publicado en 1928, Leonid Mandelstam y
Mihail Leontovič llegaron a las mismas conclusiones [3]. De
este modo fue postulado teóricamente el llamado “efecto
túnel”, nombre que le fue dado por Walter Schottky en
1931 [4]. Entre 1927 y 1928, Ralph Howard Fowler y Lothar
Nordheim, e independientemente Julius Robert Oppenheimer
demostraron que la emisión por efecto de campo provocada
por un campo eléctrico externo en metales podı́a ser explicada
a través de la aparición de una corriente eléctrica que
atravesaba mediante efecto túnel la barrera de potencial de
la superficie del material [2, 5–8].

En 1978, los cientı́ficos suizos Gerd Binnig y Heinrich Rohrer,
del IBM Zurich Research Laboratory, concibieron la idea de
utilizar el efecto túnel para realizar estudios topográficos
de mapeo de superficies basados en las ideas planteadas
por Fowler, Nordheim y Oppenheimer. Con este objetivo,
aplicaron pequeños voltajes de polarización entre una muestra
conductora y una punta de tungsteno, la cual se encontraba a
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fracciones de nanómetro de la superficie de la muestra dentro
de una cámara con ultra alto vacı́o (UHV, del inglés: ultra high
vacuum). En esas condiciones, ellos consiguieron provocar la
aparición de una corriente por efecto túnel, estable, entre la
superficie y la punta. Binnig y Rohrer con la colaboración
de Christoph Gerber y Edward Weibel, fabricaron un equipo
que trabajaba según este principio. De este modo, en 1981, se
construyó el primer STM [9–11], por el cual Binnig y Rohrer
recibieron el Premio Nobel de Fı́sica en 1986 [12, 13].

Desde los primeros momentos tras su invención, el STM ha
sido una importante herramienta extensamente empleada en
la caracterización de superficies de materiales, en el estudio de
los procesos de adsorción de moléculas y nanopartı́culas y en
la fabricación de dispositivos de electrónica molecular [14–18].

Sin embargo, la manipulación de átomos y moléculas,
demostrada en 1990 por Donald M. Eigler y Erhard
K. Schweizer [19], es su mayor fortaleza: ningún otro
microscopio puede situar átomos y moléculas en posiciones
determinadas. Esta capacidad permite fabricar estructuras
partiendo de un diseño del material, átomo a átomo o
molécula a molécula.

Dada su estructura relativamente sencilla, ha sido factible que
diversos grupos cientı́ficos construyan sus propios STM, con
más o menos originalidad, generando incluso publicaciones
cientı́ficas relativas a la construcción o automatización de los
STM [20, 21]. De hecho, en la literatura cientı́fica abundan
ejemplos de investigaciones realizadas en los más diversos
paı́ses, desarrollados o no, utilizando microscopios de barrido
por efecto túnel “caseros” [22–30]. El costo de un microscopio
comercial habı́a impedido durante años poder disponer de
ellos en los laboratorios de nuestro paı́s, de ahı́ la necesidad
e importancia de acometer el trabajo de construir uno por
nuestros propios esfuerzos.

III. EL STM DEL IMRE

Las primeras ideas de construir un STM propio se remontan
a los finales de los 90 del siglo XX, durante el desarrollo
en el entonces Instituto de Materiales y Reactivos (IMRE)
de la Universidad de La Habana (UH) –hoy Instituto
de Ciencia y Tecnologı́a de Materiales- de una tesis
doctoral en la que se emplearon datos publicados de
mediciones de electrones balı́sticos de uniones Schottky
metal-semiconductor usando un BEEM (en inglés: Balistic
Electron Emission Microscope), para desarrollar un modelo
que explicara las heterogeneidades en dichas uniones [9]. El
BEEM es un desarrollo del STM, al cual se le agrega otro
terminal aparte de los de la muestra y la punta. De este
modo, para construir un BEEM primero debı́a construirse
un STM. Entonces, se decidió fomentar una colaboración con
laboratorios que tuvieran STM o que hubieran construido
su propio microscopio. Esta colaboración permitirı́a la
compra de componentes fundamentales, utilizadas en
estos microscopios, como el piezoeléctrico y el motor de
pasos. Surgió entonces la posibilidad de establecer un
intercambio con un grupo del Centro de Investigación
y Estudios Avanzados del Instituto Politécnico Nacional

(CINVESTAV-IPN), en Mérida, México; donde el Dr. Andrés
Iván Oliva Arias ya habı́a construido un STM [20]. A esta
colaboración le faltó financiamiento y no pudo realizarse, pero
desde entonces, nos aferramos a la idea de la construcción en
Cuba de un STM, por la sencillez de su construcción y de sus
potencialidades para el estudio de superficies que nos abrı́a
las puertas para las investigaciones en nanoestructuras.

Años después, se estableció una colaboración cientı́fica
entre nuestro grupo en el IMRE con el Dr. José
Valenzuela Benavides, del Centro de Ciencias de la Materia
Condensada (CCMC) de la Universidad Nacional Autónoma
de México (UNAM) —actualmente Centro de Nanociencias
y Nanotecnologı́a (CNyN)—, en Ensenada, Baja California,
México, quien ya poseı́a experiencia en la fabricación de
este instrumento. Con el financiamiento por parte de becas
doctorales del Centro Latinoamericano de Fı́sica (CLAF) y de
la Red de Macrouniversidades de América Latina y el Caribe,
y proyectos internacionales financiados por la UNAM se pudo
finalmente iniciar la construcción de nuestro STM.

Este microscopio de barrido por efecto túnel construido está
integrado por las siguientes partes: una mesa antivibratoria,
un cabezal que contiene el piezoeléctrico, la punta para el
barrido y un circuito preamplificador, una base que soporta
la muestra —y que contiene, además, un motor de pasos y los
tornillos para el ajuste del cabezal—, una unidad de control de
microscopio —que consta de: un circuito de realimentación,
amplificador de alto voltaje, controlador de motor de pasos y
una fuente—, una computadora, una tarjeta de adquisición
de datos y un programa que controla la operación del
microscopio.

La construcción del equipo se inició en 2007 en Ensenada.
Primero, se fabricaron las piezas que conforman la base
y el cabezal, que posteriormente fueron ensamblados. El
cabezal consistió en un cilindro de acero donde van colocados
el tubo piezoeléctrico y el circuito de preamplificación. La
base consistió en un cilindro de aluminio donde está el
portamuestras y en cuyo interior está el motor de pasos, que
tiene como función acercar la punta a la muestra. (Figura 1).
Tres tornillos de rosca fina de fueron insertados al cilindro
de aluminio, que soportan el cabezal del STM. Uno de los
tornillos acopló con el eje del motor de pasos, y los otros
dos quedaron libres, siendo la función de estos dos últimos,
realizar la aproximación gruesa de la punta a la muestra. El
ajuste fino se realiza por medio del giro del tornillo acoplado
al motor, que empuja la parte trasera del cabezal hacia arriba,
provocando que su parte delantera aproxime paso a paso
la punta a la muestra. Entre los tres tornillos va ubicada la
muestra a analizar, sujetada a la base mediante una presilla
que, además, hace la función de contacto eléctrico con la
muestra. La base dispone de dos conectores, uno para realizar
la conexión con el cabezal y el otro hacia la unidad de control.
Finalmente, mediante resortes y pernos, fue asegurada la
colocación rı́gida del cabezal sobre la base, como aparece en la
Figura 1 y una tapa de aluminio fue incorporada para proteger
el sistema del ambiente exterior.
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Figura 1. Base y cabezal del STM.

El cilindro piezoeléctrico, diseñado especialmente para su
utilización en STM y microscopı́a de fuerza atómica, está
constituido por segmentos denominados +X, –X, +Y, –Y y Z,
permiten realizar, mediante la aplicación de señales eléctricas,
deformaciones mecánicas en el cabezal en las direcciones
X, Y y Z. En el interior del piezoeléctrico, solidaria con
este, se colocó una cerámica para sostener una aguja de
jeringuilla, que sirvió perfectamente como soporte a la punta
del microscopio (Figura 1). Los segmentos +X, –X, +Y, –Y, Z
del piezoeléctrico y la aguja de jeringuilla, fueron conectados
al circuito electrónico de preamplificación colocado en la parte
superior del cabezal. Terminados el cabezal y su base, se
conectaron a una unidad comercial de STM disponible en el
laboratorio del Dr. Valenzuela en la UNAM y se verificó su
funcionamiento con resultados satisfactorios.

El siguiente paso fue la construcción de la unidad de
control, un bloque electrónico integrado por un circuito de
realimentación, un circuito amplificador de alto voltaje, un
controlador de motor de pasos y una fuente. Esta unidad
de control también gobierna al motor de pasos a través de
un circuito integrado comercial. El circuito de realimentación
consiste en un control automático proporcional–integral (PI).
Su función es controlar el valor de la corriente de túnel
mediante la comparación de la señal adquirida y un valor de
referencia fijado por el operador, que es el llamado punto de
operación del microscopio. Para la automatización del sistema
fue empleada una tarjeta de adquisición de datos comercial.
Esta fue configurada para generar las señales de barrido en
las direcciones X y Y, que se aplican sobre el piezoeléctrico
del cabezal y adquirir la señal provenientes de la unidad de
control.

El programa de automatización del STM fue diseñado
utilizando LabVIEWTM, entorno de programación
gráfico, extensamente empleado en la automatización de
experimentos cientı́ficos, incluso de STM [21]. El programa
de automatización constó de tres bloques fundamentales:
uno para la generación de las ondas de barrido, otro en la
adquisición de los voltajes de túnel y, finalmente, para el
procesamiento de datos y formación de la imagen.

El bloque de generación de ondas del programa utiliza los dos
canales de salida analógica de la tarjeta. Estas ondas tienen
una forma triangular y, al ser aplicadas a los segmentos X y
Y del piezoeléctrico producen un barrido bidimensional de
la superficie por la combinación de los movimientos en X y
Y. Teniendo en cuenta que el voltaje en la dirección Z del
piezoeléctrico es proporcional a la topografı́a de la superficie,
su muestreo permite obtener información para construir la
imagen de la superficie. De este modo, la repetición sucesiva
del barrido en X y Y permite obtener la imagen de la superficie
[31]. Realizados todos estos pasos a lo largo de los años 2007 y
2008 en Ensenada y La Habana, quedaba concluida como tal la
construcción del microscopio. Sin embargo, quedaban aún por
construir un sistema de aislamiento vibracional, un sistema
para fabricar las puntas, ası́ como la conexión a tierra. Y lo más
importante, demostrar mediante una imagen, la capacidad del
microscopio para obtener resolución atómica.

El aislamiento vibracional es fundamental en este
microscopio. Debido a la alta resolución del STM, capaz de
ver átomos, las vibraciones mecánicas provenientes de la
propia edificación donde se encuentra ubicado, la presencia de
fuentes de ruido mecánico, como los pasos de las personas, el
movimiento de automóviles, etcétera, afectan notablemente
la calidad de las imágenes. Para alcanzar la resolución
atómica, es necesaria una resolución lateral de al menos
10 pm, por lo que es necesario reducir las vibraciones
externas al menos por debajo de 1 pm [18]. Las vibraciones
externas pueden ser minimizadas aislando el instrumento de
medición de las vibraciones externas, mediante el empleo
de sistemas antivibratorios [32]. Las mesas antivibratorias
también son sistemas que se venden comercialmente, pero
que con cierto grado de creatividad pueden ser sustituidas
convenientemente por sistemas “caseros”.

Una mesa antivibratoria consiste en un sistema mecánico
que idealmente tiene el comportamiento de un oscilador
armónico crı́ticamente amortiguado [32]. En este oscilador, las
vibraciones que actúan sobre él son absorbidas y el sistema es
restablecido en su posición original en un mı́nimo de tiempo.
De este modo, un STM colocado en una mesa antivibratoria
permanece aislado de las vibraciones propias de la edificación
donde está instalado, que pueden variar considerablemente
en amplitud y frecuencia según el tipo de construcción, piso y
lugar de emplazamiento [34]. De este modo, el diseño de estos
sistemas puede ser muy variado. La construcción resultante
es una combinación de materiales rı́gidos de gran masa,
como granito y acero, para eliminar los efectos de las altas
frecuencias; materiales elásticos, como gomas y colchones
de aire, para eliminar las bajas frecuencias; hasta obtener el
adecuado amortiguamiento.
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La mesa antivibratoria construida en el IMRE para el STM fue
aislada del suelo mediante piezas de goma. Sobre estas fue
colocado un cajón de madera relleno con arena e, inmerso en
ella, la base de un soporte metálico de gran masa. Sobre este
soporte se colocaron alternativamente piezas de goma y de
granito, además de un neumático inflado, a modo de colchón
de aire (Figura 2).

Figura 2. Mesa antivibratoria con el STM.

Al no contar con un medidor comercial de vibraciones, el
funcionamiento de la mesa antivibratoria se evaluó de la
siguiente forma: Sobre la superficie superior de la mesa
antivibratoria se instaló un interferómetro de Michelson [34]
observando la aparición de franjas de interferencia en ausencia
de vibraciones mecánicas externas, ası́ como el inmediato
restablecimiento de estas, décimas de segundo después de
realizar perturbaciones mecánicas en el local. La observación
de las franjas de interferencia en ausencia de vibraciones
forzadas en el local, ası́ como el rápido restablecimiento del
patrón de interferencia con posterioridad a la realización de
estas, fueron los indicadores para considerar la existencia de
un buen aislamiento vibracional.

La resolución lateral del STM está determinada por el ancho
e intensidad del filamento de corriente túnel, por el potencial
aplicado, por las propiedades fı́sicas de la punta y la muestra,
y por los estados electrónicos de la superficie y la punta [36].

De este modo, disponer de puntas de calidad es
imprescindible para lograr buenas imágenes con resolución
atómica.

Una punta debe de cumplir los siguientes requisitos: longitud
corta, simetrı́a cónica o hiperbólica, ápice afilado y ser
fabricada de un metal relativamente inerte. Los métodos

electroquı́micos son fáciles y rápidos para obtener puntas
baratas y confiables para STM [37–39]. De este modo,
para la fabricación de las puntas empleamos el método
electroquı́mico de corriente alterna [37]. En este método, un
alambre de tungsteno de 0.25 mm de diámetro es sumergido
en un electrólito a una profundidad entre 0.4 y 1 mm. El
electrólito empleado fue una solución de hidróxido de sodio
de concentración 2-6 mM. Como contraelectrodo empleamos
un aro de cobre colocado sobre la superficie del electrólito.
Para esto fue construido un equipo [39] basado en el diseño
de J. P. Ibe y colaboradores [40], que permitió la fabricación de
las puntas, mediante la aplicación de un voltaje hasta que, por
la acción de la reacción electroquı́mica, el tungsteno forma la
punta de geometrı́a cónica (Figura 3).

Figura 3. Equipo para la fabricación de puntas.

Sin embargo, a pesar de ya tener el STM, el sistema
antivibracional y la fabricación de puntas listas, no fue de
inmediato que alcanzamos la resolución atómica, debido a
que el ruido eléctrico en las imágenes impedı́a ver los átomos.
Durante un tiempo, fuimos asegurándonos que cada una
de las partes que componı́an el microscopio funcionaban
bien. Fue un ejercicio en el creamos circuitos de prueba,
mediciones de señales de corriente y voltaje en el tiempo en
todos los circuitos del STM. Un reacomodo de todas las tierras
resolvió el ruido en las imágenes, para lo cual fue necesario
modificaciones en la instalación.

Finalmente, el 24 de febrero de 2009 fue la fecha en que se
logró adquirir por primera vez una imagen con resolución
atómica en Cuba, correspondiente a una superficie de grafito
(Figura 4). Para lograr la resolución atómica se realizó una
calibración preliminar basada en la medición de tamaños
de granos de oro, y pistas de disco compacto, previamente
observadas con un microscopio electrónico de barrido (SEM,
del inglés: scanning electron microscope) y luego se realizaron
sucesivos barridos de la muestra disminuyendo su amplitud
y seleccionando la frecuencia de barrido adecuada, hasta que
fue posible visualizar los átomos.
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Figura 4. La primera imagen de resolución atómica adquirida en Cuba,
átomos de grafito. IMRE, Universidad de La Habana, 24 de febrero de 2009.

El siguiente paso, consistió en la calibración del cabezal del
microscopio en las direcciones X y Y, a partir de las imágenes
de resolución atómica, que proporcionaban las distancias
entre los átomos de grafito.

En imágenes de resolución atómica realizadas sobre áreas
de diferente tamaño, aplicando diferentes voltajes al
piezoeléctrico en la dirección X e Y, realizamos el conteo de la
cantidad de átomos presentes a lo largo de un perfil trazado
sobre la imagen, y podemos establecer la magnificación para
cada voltaje.

En el caso de la calibración del eje Z, el procedimiento fue el
siguiente. Conociendo el valor de la altura de los escalones
monoatómicos del grafito, la medición de los voltajes en Z en
escalones monoatómicos permitió realizar la calibración.

Este proceso, descrito en pocos párrafos, no estuvo exento
de dificultades, errores e imprevistos. Un caso curioso fue en
una ocasión la afectación que sobre el STM estuvo realizando
durante algunos meses un aire acondicionado defectuoso, que
incrementaba desmesuradamente la humedad del local donde
se encontraba el equipo, lo que se manifestó en un incremento
del ruido eléctrico en el cabezal del STM. Varias semanas
tomó identificar el origen de esta fuente de ruido, que fue
eliminada después de reparar el aire. Originalmente, la mesa
antivibratoria fue construida en un local muy pequeño, por
lo que su funcionamiento no fue eficiente. No fueron pocas
las dificultades ya explicadas para garantizar la calidad de la
conexión a tierra. A todo esto, podrı́an agregarse las conocidas
dificultades con las interrupciones del servicio eléctrico.

Desde que se logró la primera imagen de resolución atómica,
el equipo ha sido empleado en la investigación cientı́fica y las
imágenes adquiridas con él han sido publicadas en diversas
revistas cientı́ficas [41–52].

En el propio año 2009 nuestro laboratorio en el IMRE recibió la
visita del Dr. Chistoph Gerber, uno de los creadores del STM
en 1981. Durante su visita elogió la originalidad y calidad de

las soluciones propuestas para superar las dificultades y poder
poner en funcionamiento el STM y realizó valiosas sugerencias
para su mejoramiento (Figura 4).

Figura 5. Visita del Dr. Christoph Gerber al STM del IMRE, noviembre de
2009.

Los comentarios elogiosos del Dr. Gerber fueron de gran
estı́mulo para nosotros, quienes continuamos empeñados en
ver, a través de un pequeño túnel, los más pequeños detalles
de los materiales en la nanoescala.

IV. CONCLUSION

La obtención de la primera imagen de resolución atómica
en Cuba fue el resultado del empeño de un grupo de
investigación del IMRE, que en colaboración con un grupo
mexicano pudo acometer la labor de construir un STM y
ponerlo en funcionamiento. Este resultado demuestra que
es posible, en las condiciones de nuestro paı́s construir
equipamiento cientı́fico de avanzada y lograr con él resultados
de impacto.
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Vančik, J. Phys. Chem. C 115, 20267 (2011).

[23] A. Crepaldi, S. Pons, E. Frantzeskakis, F. Calleja, M.
Etzkorn, A. P. Seitsonen, K. Kern, H. Brune y M. Grioni,
Phys. Rev. B 87, 115138 (2013).

[24] N. V. Fischer, U. Mitra, K.–G. Warnick, V. Dremov, M.
Stocker, W. Hieringer, F. W. Heinemann, N. Burzlaff, A.
Görling y P. Müller, Chem. Eur. J. 20, 11863 (2014).

[25] F. Lecadre, F. Maroun, I. Braems, F. Berthier, C.
Goyhenex y P. Allongue, Surf. Sci. 607, 25 (2013).

[26] R. Hammer, A. Sander, S. Förster, M. Kiel, K. Meinel y
W. Widdra, Phys. Rev. B 90, 035446 (2014).

[27] D. Y. Lee, M. M. Jobbins, A. R. Gans y S. A. Kandel,
Phys. Chem. Chem. Phys. 15, 18844 (2015).

[28] H. Li, H.–X. Fu y S. Meng, Chin. Phys. B 24, 086102
(2015).

[29] A. Martı́n–Recio, C. Romero–Muñiz, A. J.
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Estévez-Hernández, M. H. Farı́as Sánchez y D.
Dı́az-Domı́nguez, Acta Microscopica 26A, 430 (2017).

[47] R. Barzaga, H. Mikosch, J. A. Martı́nez y M. P.
Hernández, Acta Microscopica 26A, 436 (2017).

[48] J. A. Martı́nez Pons, Caracterización de superficies de oro
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CONMEMORANDO LA HISTORIA DE LA FÍSICA EN CUBA.

El 2 de abril de 2025 se develó en la facultad de Fı́sica de la
Universidad de La Habana una placa conmemorativa para
inaugurar el aula de postgrado “Dra. Elena Vigil Santos”,
como homenaje a quien fuera una de las personalidades
más importantes en nuestra Fı́sica. Su larga trayectoria como
impulsora del campo de los materiales semiconductores en
Cuba, y su sostenida labor docente –especialmente dentro de
las asignaturas asociadas a la Fı́sica del Estado Sólido— han
dejado un sólido legado dentro de nuestra disciplina. Más
temprano dentro de la misma jornada, se habı́a organizado
en la Facultad de Fı́sica una sesión de debate dirigida a
los estudiantes, donde la Dra. Marı́a Sánchez-Colina realizó
una documentada presentación sobre la Historia de la Fı́sica
en Cuba profusamente ilustrada, y salpicada con notables
pinceladas de humor.A todas estas actividades, además de
los jóvenes, se contó con la presencia de profesores de todas
las edades –incluyendo a una figura tan legendaria dentro de
la docencia cubana como el profesor Medel Pérez-Quintana.

Recordando a Elena. Momento en que se devela la placa que da el nombre
de Elena Vigil-Santos a un aula de la Facultad de Fı́sica de la Universidad
de La Habana, el 2 de abril de 2025. (Foto: E. Altshuler).

Dr. Ernesto Altshuler
Facultad de Fı́sica, Universidad de La Habana

EL REGRESO DEL COSMONAUTA.

Del 5 al 6 de junio de 2025, la Facultad de Fı́sica de
la Universidad de La Habana celebró su XL Jornada
Cientı́fica Estudiantil, dedicada al 45° aniversario del vuelo
espacial conjunto Cuba-URSS (Programa Intercosmos) y a los
cientı́ficos cubanos involucrados. En la conferencia inaugural,
realizada en el anfiteatro Manuel F. Gran Guilledo de la Facultad
de Fı́sica. Participaron el Gen. Brig. Arnaldo Tamayo Méndez
(tripulante de la misión Soyuz 38), el Dr. José Altshuler
(exdirector del programa) y el Dr. Julio Vidal Larramendi,
fı́sico que contribuyó a uno de los experimentos llevados
a cabo durante el vuelo. El evento destacó la contribución
cubana a la exploración espacial. En el cierre, se llevó a
cabo una sesión de preguntas e intercambio con estudiantes
y profesores. Durante este intercambio, el profesor Vidal
compartió su experiencia dentro del “Experimento Caribe”
vinculada al desarrollo del experimento de purificación de
germanio en condiciones de mircogravidez, el Dr. Altshuler
compartió con los asistentes sus vivencias relacionadas con
el proceso previo al vuelo y presentó material gráfico, como
libros y revistas de la época, que mostraban las imágenes que
dieron la vuelta al mundo en 1980 y el General Tamayo relató el
exigente proceso de selección, ası́ como la preparación fı́sica
que implicaba el viaje, e incluyó detalles sobre algunos de

los experimentos realizados a bordo de la nave Soyuz 38. El
encuentro no solo celebró este importante aniversario, sino
que también destacó el significativo aporte de la comunidad
cientı́fica cubana en este capı́tulo de la historia espacial.

El regreso a la facultad de Fı́sica. Al centro, el cosmonauta Arnaldo
Tamayo-Méndez (con la camisa azul). A su izquierda y derecha, los
profesores José Altshuler y Julio Vidal, respectivamente. En la foto se
incluyen varios estudiantes de tercer año de licenciatura en Fı́sica (Foto: E.
Altshuler).

Dra. Yuslı́n González
Facultad de Fı́sica, Universidad de La Habana
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LAUROS CUBANOS EN LA OLIMPIADA MESO-AMERICANA DE FÍSICA.

El pasado 16 de junio de 2025 se celebró la 8va Olimpiada
Mesoamericana de Fı́sica. Participaron en total 60 estudiantes
de 8 paı́ses. Cuba aportó 4, que han estado entrenándose
en la Facultad de Fı́sica de la Universidad de La Habana
desde el 3 de marzo de 2025, y que participaron vı́a
online desde esa institución. Se obtuvieron magnı́ficos
resultados: Cuba se llevó un ORO por intermedio de
Sergio D. Santiesteban-Sarmiento y un BRONCE a manos
de Rosmary Fernández-Tamayo, además de una mención.

Los cuatro participantes cubanos en acción, mientras participaban
(modalidad online) en la 8va Olimpı́ada Mesoamericana de Fı́sica, celebrada
el 16 de junio de 2025 (Foto: S. Larramendi)

Dr. Saúl Larramendi
Facultad de Fı́sica, Universidad de La Habana
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