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Recently, extrinsic faulting has been discussed within the
framework of computational mechanics allowing to derive
expressions for the statistical complexity, entropy density and
excess entropy as a function of faulting probability. In this
contribution the analysis is extended to consider the combined
presence of two planar faults type within the random faulting model.
Extrinsic+intrinsic faults are considered. The ε-machine description
of the faulting dynamics is presented. Entropic magnitudes are
derived as well as expressions for the hexagonality and the
probability of consecutive symbols in the Hägg coding. The analysis
continues the study started with individual faulting types under the
computational mechanics approach.

Recientemente, la mecánica computacional ha sido utilizada para
discutir defectos cristalinos extrı́nsecos en estructuras compactas,
en esta contribución el análisis es extendido para incluir la
presencia simultánea de defectos intrı́nsecos. Ambos tipos de
defectos cristalinos (extrı́nsecos+intrı́nsecos) se asumen dentro
del modelo de defectos aleatorios no interactuantes. La descripción
está basada en la construcción de la maquina de ε, ello permite
introducir medidas entrópicas, ası́ como la expresión para la
hexagonalidad. El análisis continúa el estudio ya comenzado sobre
defectos individuales desde el punto de vista de la mecánica
computacional.

PACS: Stacking faults and other planar or extended defects (Fallas de apilado y otros defectos planares o extendidos), 61.72.Nn; time
series analysis (análisis de series temporales), 05.45.Tp

I. INTRODUCTION

Computational mechanics aims at treating complexity in
dynamical systems by looking at it as a computational device
capable of performing physical computation, that is, to store
and process information [1]. The approach, as pioneered
by Crutchfield et al [2], aims at building the less powerful
computational device that can optimally describe the system
behavior. Optimality means that any other computing model
will be at most, as good in its description capability as the
less powerful model. This optimal computing model is called
an ε-machine. Once the ε-machine is found, it is possible to
characterize the system by several entropic measures.

The use of computational mechanics in the study of planar
faulting have been pioneered by Varn et al. [3–6], and
Estevez-Rams et al, [7–10]. The approach starts by coding
the stacking sequence in close packed structures (CPS) by
using some binary code (e.g. Häag notation or Jagodzinski
notation) and then building an optimal Hidden Markov
Model (HMM) description of the faulting dynamics. From
there it is possible to capture the occurrence of pattern, the
amount and nature of disorder and the correlation among
features in the stacking arrangement [5, 11]. The HMM
aproach is general enough to be used beyond the faulting
model to describe disorder and polytypism [8, 9].

Close packed structures are crystal structures resulting
from the stacking of identical periodic layers. They can be
treated, once a layer motif is defined, as a one dimensional
problem. From the crystallographic perspective they are
order-disorder (OD) structures built by stacking hexagonal
layers [12]. The constrain that reduces the number of
possibilities is that two consecutive layers are not allowed
to have the same lateral displacement. The most common
CPS are the cubic close packed or 3C (Bravais lattice of type
cF) and the hexagonal close packed or 2H (Bravais lattice of
type hP). These two are also the simplest types of polytypes,
as each layer is crystallographically equivalent to any other
layer (they have the same spatial environment). It is common
that periodicity in the stacking arrangement of CPS is not
perfect. The disruption of stacking periodicity is known as
planar disorder or stacking faults. The model that considers
that a single occurrence of planar faulting is an independent
event is called the Random Faulting Model (RFM). Within
this model, faulting is reduced to certain types: intrinsic
(removal of a layer from the sequence), extrinsic (addition of
a layer to the sequence) and twinning (change of orientation
in the sequence). In the RFM, a constant probability can be
assigned to each type of stacking faults [13–15].

RFM is too simple to describe heavy faulting density in
solids. The main limitation comes from neglecting any
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interaction between defects. Besides such assumption it also
considers that no other type of defects happens in the crystal.
This assumption implies that faults go through the whole
crystal, avoiding the need to account for the appearance of
partial dislocations. Finally, planar faulting are taken to occur
along only one stacking direction independently of the fact
that crystallographic symmetry may imply several possible
stacking directions in the crystal (e.g. face centered cubic
crystal can be described by several stacking directions all
belonging to the 〈111〉 family of equivalent directions).

In spite of its simplicity, the RFM is still interesting as
a reference model. It is a good starting point for more
sophisticated calculations [16].

In the past, intrinsic and twin faulting in CPS have been
studied under the approach of computational mechanics [7].
This study has been followed more recently to include single
extrinsic faulting [10]. What has not yet been reported are
models that account for the simultaneous occurrence of
extrinsic faulting and the other types of defect. The purpose
of this paper is to report such analysis for extrinsic+ intrinsic
fault model.

In this contribution, the same procedure described in the
analysis of extrinsic faulting as explained in [10] will be
followed. It will be clear that allowing two type of defects
adds several complications to the analysis. Several analytical
expressions for disorder will be reported. We have tried to
make the article as much as self contained as possible.

II. STACKING FAULTS IN CLOSE PACKED
ARRANGEMENTS.

In close packed structures such as face centered cubic
(FCC), layers can be stacked in three positions according
to their lateral displacement with respect to a common
origin. This positions are usually labeled A, B and C [12].
The FCC structure stacking order is then described by
ABCABC . . ., while the hexagonal compact structure has a
stacking described as ABABAB . . . [17]. The close packed
constrain then means that in the stacking arrangement the
same letter can not happen consecutively.

Hägg devised a less redundant coding [18]. When a pair
of layers are of the types AB, BC or CA a plus (or 1) code
is assigned, a minus (or 0) otherwise. The close packed
constrain is built into the Hägg notation [19]. An interesting
feature of the Häag notation is that the stacking arrangement
is now a binary string instead of a three symbols sequence.

Every time that the periodic arrangement is interrupted it
is considered a fault. The most simple faults that can be
considered are (1) the missing of a layer, or intrinsic fault, for
example in the FCC structure could be ABCA|CABC, where
the | stands for where the fault has occurred. As second type
of fault and somehow opposite to the previous one is the (2)
extrinsic fault, which is the insertion of a layer in the periodic
sequence. In the FCC structure could be ABC|B|ABC, where
an extraneous B layer has been added to the ideal sequence.
Finally a third type is the (3) twin fault which is a reversion of

the stacking ordering. Again, in the FCC structure could be
ABCABC|BACBAC. In what follows, the probability for the
occurrence of a deformation fault will be denoted by α, and
of an extrinsic fault by γ.

Using the Häag code, the different faulting dynamics
can be described by a finite-state automaton or machine
which is equivalent to a Hidden Markov Model (HMM).
A HMM will be defined by an alphabet, in our case the
binary alphabet {0, 1}, a numerable set of states S, and the
transition probabilities between states. The set of transition
probabilities defines the transition matrices T [υ], where each
entry t(υ)

i j represents the probability of jumping from state
i to state j, while emitting the symbol υ ∈ {0, 1} [3–7]. The
stochastic transition matrix is defined as T = T [0] + T [1].

According to the HMM description a particular stacking
arrangement can be seen as a realization of the finite-state
automaton. The system starts at some predefine state and, as
it performs transitions with a given probability from one state
to another, it outputs a symbolsυ ∈ {0, 1}. In this way, from the
HMM perspective, a sequential dynamical system has been
defined, statistically equivalent to the stacking arrangement.
Care must be taken not to consider the dynamical system as
a model of the actual physical or chemical process that lead
to the stacking arrangement in the solid. The HMM is just
a convenient mathematical device that allows to capture the
relevant features in the stacking ordering.

The output of the HMM is a bi-infinite string Υ of 0′s and 1′s.
Of all the HMM models describing a given stacking ordering
the minimal one is taken as to be optimal, in the sense of
using less resources (number of states) to describe the system
ordering. If we add the constrain that in this minimal model,
given a state, the output symbol determines unambiguously
the transition to another state (unifiliar property), then it is
called an ε-machine [1, 2].

Once the ε-machine of the stacking process is found, several
measures can be defined. The statistical complexity Cµ is
defined as the Shannon entropy [20] over the ε-machine
states,

Cµ = −
∑

i

pi log pi, (1)

where pi is the stationary probability of the ith-state. The sum
is over all states probabilities, logarithm is taken in 1 and in
what follows base 2. Cµ measures the amount of information
the system stores.

If we denote by 〈π| the vector of state probabilities pi, then
〈π| can be calculated as the normalized left eigenvector of the
transition matrix T with eigenvalue unity.

〈π| = 〈π|T . (2)

The Shannon entropy H(X) for an event set X with discrete
probabilities distribution p(X) is defined as [20]

H(X) = −
∑

i

p(xi) log p(xi), (3)

where the sum is taken over all the probability distribution.
The units of the entropy are bit.
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For the set of all strings ΥN of length N, the Shannon block
entropy H(ΥN) is given by equation (3), where p(X) is taken as
the probability of a given string belonging to ΥN. The entropy
density or entropy rate hµ is defined as

hµ = lı́m
N→∞

H(ΥN)
N

, (4)

when such limit exist. hµ is a measure of the irreducible
disorder in the stacking arrangement [21].

For an ε-machine the entropy density is given by [22]

hµ = −
∑
k∈S

P(k)
∑

x∈{0,1}

P(x|k) log P(x|k), (5)

where P(a|b) means the probability of a conditioned on b. The
unit of the entropy density is bit/site.

Consider any position in the bi-infinite string Υ, from that
point it can be defined the left half infinite string

←−
Υ , and

the right infinite half
−→
Υ . Excess entropy E is a measure of

predictability and it is defined as the mutual information
between the left half and the right half in the system output,

E = H(
←−
Υ) + H(

−→
Υ) −H(Υ). (6)

Hexagonality is a measure of the fraction of hexagonal
environments found in the stacking sequence. A hexagonal
environment is one where a layer has the same displaced
layer type above and below (ABA, ACA, BCB, BAB, CBC
and CAC). Hexagonality can be calculated as the sum of the
probability of occurrence of a sequence 01 and a sequence 10
in the Hägg code. The probability of a sequence 01 is given
by

P(01) = 〈π|T [0]
T

[1]
|1〉, (7)

correspondingly for a sequence 10

P(10) = 〈π|T [1]
T

[0]
|1〉. (8)

|1〉 is a vector of 1′s.

III. SINGLE FAULTING DESCRIPTION IN THE FACE
CENTERED CUBIC STACKING ORDER

The ideal FCC stacking in the Häag notation is described as
a bi-infinite string of 1s or 0s. The HMM description of an
intrinsic fault in a 3C stacking arrangement is depicted in
Fig. 1a. In what follows it will be considered the ideal 3C
structure described by a sequence of 1s, corresponding to the
sequence that goes in the direction A→ B→ C.

The occurrence of an intrinsic fault, governed by a probability
α, is reflected as the insertion of a 0. This case was already
analyzed in [7]. The HMM description of the intrinsic faulting
process has one state and it is equivalent to the flipping of a
biased coin.

The HMM description of an extrinsic fault has been analyzed
in [10] and it is shown in Fig. 1b. This case is slightly

more involved than the previous one. The occurrence of the
extrinsic fault with probability γ is reflected in the Häag code
as the insertion of two consecutive 0s. The ε-machine is made
of two states. While no faulting occurs the system stays in the
f state, but as soon as an extrinsic fault happens, there is a
transition to an e state upon emitting a 0, from where the
system returns with certainty to the f state emitting another
0. In [8] is discussed how this dynamics is equivalent to a
biased even process.

(a) intrinsic

f

(b) extrinsic

f e

(c) twinning

f b

Figure 1. The Hidden Markov Model (HMM) of the (a) intrinsic, (b) extrinsic
and (c) twin faults in a 3C structure. The label besides the directed arcs s|p
must be understood as the symbol emitted with the given probability.

The third type of faulting considered is the twin fault. The
probability of occurrence is denoted by the letter β. This
faulting has been reported in [7]. The ε-machine description
is shown in figure 1c. For this type of defect the two possible
3C sequence, one made of 1s and the other of 0s, can happen.
The twin fault is nothing else than a jump from one type of
sequence to the other.

IV. COMBINED FAULTING IN THE FACE CENTERED
CUBIC STACKING ORDER

The HMM description of the stacking arrangement in the
presence of combined faulting should be the addition of
the HMM for each type of defect. Yet, this is not enough.
Additionally, the case of simultaneous occurrence of more
than one defect has to be taken into account. Both operations,
the direct sum of the isolated HMM and the emergence of
new transitions as result of simultaneous defects can result
in a non-unifiliar HMM. In such case, the description can
not be considered a valid ε-machine. In particular it is not
well suited for the calculation of the statistical complexity,
the entropy density and the excess entropy. A unifiliar
representation can be found from the non-unifiliar one by
means of mixed states [23].

IV.1. Extrinsic + intrinsic faulting

A possible HMM description for this case is shown in Fig. 2.

The corresponding transition matrix will be given by

T
[1] =

(
αγ + αγ 0
0 0

)
T

[0] =

(
αγ αγ
1 0

)

T =

(
αγ + α αγ
1 0

)
=

(
αγ + γ αγ
1 0

) (9)

where α = 1 − α and γ = 1 − γ. The stationary probabilities
over the recurrent states f and e can be calculated following
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equation (2) which results in

〈π| =

(
1

1 + αγ
,
αγ

1 + αγ

)
, (10)

the first value corresponds to the f state.

f

e

Figure 2. HMM of the 3C system with extrinsic+intrinsic faulting. Labels
follow the same description as in Figure 1.

In order to obtain the hexagonality, the probabilities of the
sequences 01 and 10 has to be calculated from equations (7)
and (8), both expressions turn to be equal and given by

P(01) = P(10) =
αα(1 − 2γ)2 + γγ

1 + αγ
, (11)

from where the hexagonality is given by 2P(01). Hexagonality
has a maximum value of 1/2 at α = 1, γ = 1/2 or α = 1/2,
γ = 0.

The statistical complexity can be considered as given by
equation (1). Results are shown in Fig. 3. For a fixed value
of γ, increasing value of faulting probabilities results in a
decrease of Cµ. For the intrinsic faulting with almost no
extrinsic faulting the system is almost all the time in the single
state f (Fig. 2). For increasing value of α, extrinsic faulting
cancels and the only disorder is given by the intrinsic faulting,
correspondingly Cµ decreases (Fig. 3a).

The HMM description used so far can not be considered an
ε-machine because it does not have the unifiliar property. In
order to derive the ε-machines we need to build a unifiliar
description from the already found HMM, which results in
a mixed state representation. The procedure for doing so can
be found in [23]. The result for this case is shown in Fig. 4,
where the set of states in the mixed state representation will
be denoted byM.

The first thing to notice is that the unifiliar FSA has
a numerable but infinite number of states. The starting
state is labeled with an S which has a transient character
(asymptotically the probability of the system in this state is
zero), and the same goes for all states labeled as Tn.

The state labeled as F is recurrent with probability

P(F) = 〈π|T [1]
|1〉 =

α + γ(2α − 1)
1 + αγ

, (12)

for γ = 0, P(F) = α, and for α = 0, P(F) = γ/(1 + γ).

(a)

(b)

Figure 3. Statistical complexity as a function of (a) the intrinsic fault
probability for fixed extrinsic fault probability; (b) the extrinsic fault probability
for fixed intrinsic fault probability.

Figure 4. Mixed state representation of the extrinsic+intrinsic faulting. The
state labeled as S is the starting state, states labeled as Ti are transient
states with stationary probability equal to zero. All other states are recurrent.

The states in the upper line are also recurrent with probability

P(Rn) = 〈F|
(
T

[0]
)n
|1〉 (13)

where

〈F| = (1, 0),

and

(
T

[0]
)n

=
2−n

z


yn+1
−xn+1

2 (z − αγ) y
2

yn
−xn

2

yn
− xn z(yn+xn)−αγ(yn

−xn)
2

 , (14)

with

z =

√
α2γ2 + 4γα,

x = αγ − z,

y = αγ + z.

(15)
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Figure 5 shows that the probability of the states Rn drops
exponentially with n.

For γ = 0, P(Rn) = αn, the non-transient part of the
mixed representation becomes a redundant, and therefore
non-optimal, HMM description of the intrinsic fault process
(compare with Fig. 1a). The same goes for α = 0,
where P(Rn) = γ(n+1)/2 and the mixed representation is a
non-optimal description of the extrinsic faulting.

Figure 5. Stationary probability of the recurrent states Rn for given values
of faulting probabilities. As n increases, the probability of reaching the state
decreases exponentially. Notice the semi-log scale in the plot.

Entropy density can be calculated if we know the transition
matrix W of the mixed representation. From the HMM
automaton of Figure 4 the transition probabilities are given
by

P(0|S) =
2γα+αγ

1+γα

P(1|S) = 1 − P(0|S)

P(0|F) = α + γ − 2αγ,

P(1|F) = 1 − P(0|F),

P(0|Rn) =
〈F|(T [0])n+1

|1〉

〈F|(T [0])n
|1〉
,

= 1
2
α(3γ−1)(xn+1

−yn+1)+(z−2γ)xn+1+(z+2γ)yn+1

(3αγ−α−2γ)(xn−yn)+z(xn+yn)

P(1|Rn) = 1 − P(0|Rn).

(16)

The expression for the entropy density calculated from the
unifiliar representation is given by the expression [22]

hµ = 〈πW |H(W)〉, (17)

where πW and H(W) are the stationary probabilities and
the Shannon entropy over the transition probabilities of the
mixed states, respectively. The first can be known from an
expression similar to (2) using the W transition matrix, the
second follows the expression

|H(W)〉 = −
∑
s∈M

|δs〉
∑

x∈{0,1}

〈δs|W(x)
|1〉 log〈δs|W(x)

|1〉 (18)

δi is the distribution with all the probability density on the

i-th mixed state. The reader can refer to [22] for further
explanation.

(a)

(b)

Figure 6. (up) Contour plot of the entropy density hµ as a function of the
faulting probabilities α and γ. (a) hµ plot as a function of intrinsic fault
probability for fixed extrinsic fault probabilities. (b) hµ plot of entropy density
as a function of extrinsic fault probability for fixed values of intrinsic fault
probabilities.

In figure 6 at the top, the contour plot of the entropy density
as a function of α and γ is shown. The four corners of
the plot exhibit zero entropy as should be expected. Again,
the symmetry breaking of γ is seen as the graphic is not
symmetric with respect to the middle point. The plots in
figure 6a further emphasizes this symmetry breaking. The
γ = 0.001 curve is almost symmetrical with respect toα = 1/2,
a result that recovers the expected behavior for the intrinsic
faulted system. This symmetry is clearly broken for larger
values of γ as can be seen in the curves for γ = 0.15 and
γ = 0.25. It is also interesting to notice that for larger values
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of extrinsic faulting (γ = 0.25) the entropy has a jump as soon
as intrinsic faulting steps in reaching a maximum, and then
it starts to decrease. This can be understood as a result of the
opposite effect of both faulting types. Whileγ andα are small,
both faulting happen in isolation and therefore contributes
to the disorder of the system. For larger values of faulting
probability, if one allows for simultaneous occurrence as it
has been done in this model, then each fault cancels itself,
which explains the decrease in entropy density. The same
reason explains the behavior of the curves in Fig. 6b.

The statistical complexity over the mixed states can be
considered, as given by equation (1), using equations (12)
and (13) (In the infinite sum, due to the exponential decaying
behavior of P(Rn), only a few terms can be considered).
Results are shown in Fig. 7. For increasing value of faulting
probabilities, Cµ increases. The behavior can be understood
by looking at Figure 4 together with Fig. 5. For increasing
faulting values the probability of the Rn states increases,
which means that more recursive states are significantly
involved in the system description. In that sense more
resources (memory) are needed to account for the increasing
disorder introduced by the faulting.

Figure 7. Statistical complexity Cµ as a function of (up) intrinsic fault
probability and (down) extrinsic fault probability.

Finally, the probability of a chain of 1’s of length n is given
by

P(1n) = 〈π|(T[1])n
|1〉 (19)

From where the average length of blocks of 1’s can be
calculated

〈L1〉 =
1 − (αγ + αγ)

(1 + αγ)(αγ + αγ)2 . (20)

〈L0〉 = 〈L1〉 at γ = 0.3623.

In Fig. 8 hexagonality as a function of statistical complexity of
the HMM (not the mixed representation) and entropy density
are shown. There is no functional dependence between
hexagonality and both measures. As a tendency, the higher
the entropy density is, the higher the hexagonality, which
comes as no surprise, as hexagonal neighborhoods are result
of faulting events, which in turn implies larger disorder.
Yet, the higher the entropy density the larger range of
hexagonality the system can accommodate. In both plots of
figure 8, the red points corresponds to a system with only
extrinsic faulting. It comes immediately that the extrinsic
fault curve is the lower bound for the hexagonality vs Cµ plot.
The dependence of hexagonality with statistical complexity
seems to be functional when only extrinsic fault is present.
The introduction of intrinsic faults widens the range of values
of hexagonality that a given Cµ can allow. For the dependence
with entropy density, the hexagonality for extrinsic faulting
alone is a two branch curve, the upper turn being an upper
bound (Fig. 8b). The lower red branch happens for an
extrinsic fault densityγbetween 0 and 0.38. The upper branch
corresponds to the range γ ∈ [0.38, 1] meaning that above
0.38 “defects” starts prevailing over the ordered underlying
sequence.

H
e
x

H
e
x

(a)

(b)

Figure 8. Hexagonality vs (a) statistical complexity and (b) entropy density.
Hexagonality is not a function of either measures. Red points correspond to
α = 0.

V. CONCLUSIONS

The occurrence of intrinsic faults in a system where
extrinsic faulting is present breaks the unifiliar character
of the HMM. The two state description cease to be an
ε-machine description. As a result, unifiliarity must be
attained through the mixed state representation resulting in

REVISTA CUBANA DE FÍSICA, Vol 35, No. 1 (2018) 8 ARTÍCULOS ORIGINALES (Ed. E. Altshuler)



a HMM description with numerable but infinite number of
states. It was already reported that extrinsic faulting leads
to a sofic system, and it came as a surprise that such simple
system leads to an infinite memory description. Here we find
that the addition of intrinsic faulting, still a simple system
in terms of the faulting dynamics, has a description with
an infinite number of states. Although topologically simple,
this fact further emphasizes that even simple physical models
can lead to non trivial description in terms of computational
mechanics.

Several useful analytical expressions were also derived
for different entropic measures, probabilities, and lengths
as a function of the faulting probabilities α and γ. Such
expressions have not been reported before.
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