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A multicanonical formalism is applied to the problem of 
statistical equilibrium in a complex system with a hierarchy of 
dynamical structures. At the small scales the system is in quasi-
equilibrium and follows a Maxwell-Boltzmann distribution with 
a slowly fluctuating temperature. The probability distribution for 
the temperature is determined using Bayesian analysis and it is 
then used to average the Maxwell-Boltzmann distribution. The 
resulting energy distribution law is written in terms of generalized 
hypergeometric functions, which display power-law tails.

Se aplica un formalismo multicanónico al problema del 
equilibrio estadístico en un sistema complejo con una jerarquía 
de estructuras dinámicas. A escalas pequeñas el sistema 
está en cuasi-equilibrio y sigue una distribución de Maxwell- 
Boltzmann con una temperatura fluctuante. La distribución 
de probabilidades de la temperatura se determina utilizando 
el análisis bayesiano y luego esta es usada para promediar la 
distribución de Maxwell-Boltzmann. La ley de distribución 
de energía resultante se escribe en términos de funciones 
hipergeométricas generalizadas, que muestran una cola tipo ley 
de potencia.

PACS: Complex systems, 89.75.-k; classical ensemble theory, 05.20.Gg; distribution theory, 02.50.Ng

INTRODUCTION

Power law distributions occur in widely diverse physical 
systems spanning an impressive range of length scales [1]. 
The appearance of heavy-tailed distributions is often traced 
to the presence of hierarchical structures in the system [2], 
whose complex “interaction” may result in violation of the 
statistical independence of subsystems, thus leading to non-
Gibbsian distributions [3]. Despite these insights and the 
many contributions to the problem [4], it is fair to say that 
the physical mechanisms behind the emergence of power-law 
distributions are not yet well understood.

Recently, we introduced [6] a general formalism to describe 
statistical equilibrium of complex systems with multiple 
scales where the probability distribution of states displays 
power-law tails. In this formalism, the hierarchical structure 
embedding the system of interest is effectively modeled as a 
set of nested “internal heat reservoirs,” where each “reservoir” 
is described by only one effective degree of freedom, namely, 
its “temperature.” On the basis of a few physically reasonable 
assumptions, it was possible to show that for a large class of 
systems the equilibrium distribution can be written explicitly 
in terms of certain generalized hypergeometric functions, 
which exhibit power law tails. This family of generalized 
hypergeometric (GHG) distributions includes, as its first two 
members, the Boltzmann-Gibbs distribution and the Tsallis 
distribution [7]. Higher-order members of the GHG family of 
distributions have been shown to describe remarkably well the 

statistics of velocity fluctuations in turbulence [5].

The GHG distribution represents a generalization of the 
canonical distribution for multiscale systems and hence it is 
also called multicanonical. The main purpose of the present 
paper is to give an alternative derivation, based on Bayesian 
analysis, of the multicanonical distribution. Because the 
derivation of the multicanonical distribution given here tries 
to parallel (whenever possible) the usual treatment of the 
canonical distribution, we shall begin our presentation by 
briefly reviewing the derivation of the canonical distribution.

Figure 1: A canonical system in thermal equilibrium at temperature T0 . 
Arrows indicate energy exchange between the subsystems.
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THE CANONICAL DISTRIBUTION

Consider a system in thermal equilibrium at some temperature 
T0. We recall that in the canonical formalism the constant 
temperature constraint is enforced by embedding the system 
is a much larger system (i.e., a heat bath) capable of giving it 
energy [8]. We designate the system of interest by the label 
2 and the larger system embedding it by the label 1, with the 
combined system formed by subsystems 1 and 2 being given 
the label 0; see Fig. 1.

The energies of systems 1 and 2 will be denoted by Ek
1 

and Ei
2, respectively, where i and k represent the labels 

designating the possible states in each system. Let us denote 
by p0(Ek,i) = p0(Ek

1 + Ei
2) the probability of finding system 0 

in a state corresponding to energy Ek,i =Ek
1 + Ei

2. In view of 
the independence between systems 1 and 2, one can then 
write
p E E p E p Ek i k i0 1 2( ) ( ) ( ),+ =

               
(1)

where p1(Ek) and p2(Ei) are the probabilities of finding 
systems 1 and 2 in states with energy Ek and Ei , respectively. 
Taking the logarithm derivative of (1) with respect to Ek 
yields
∂ +

∂
= ≡ −ln ( ) ln ( ) ,p E E

E
d p E
dE

i k

k

k

k

0 1
1β

               
(2)

where β1 may be a function of Ek but not of Ei . On the other 
hand, it is clear that
∂

∂
= ∂

∂
=ln ln ln ( ) .p

E
p
E

d p E
dEk i

i

i

0 0 2

               
(3)

Comparing (2) and (3), one then concludes that
d p E
dE

i

i

ln ( ) .2
1= −β

                
(4)

Since β1 does not depend on Ei , the preceding equation can be 
readily integrated, yielding

p E Ei i2 1 1( | ) ·exp( ).β β= −constant              (5)
Since the partition of system 0 into subsystems 1 and 2 is 
entirely arbitrary, the quantity β1 must be the same for any 
partition one chooses. In other words, β1 is a characteristic of 
system 0 only, that is,
β β1 0= ,

                 
(6)

which implies that
p E A Ei i2 0 0( | ) exp( ),β β= −

                
(7)

where A is a constant. 

It should be evident that the discussion above is completely 
symmetrical with respect to labels 1 and 2, so that system 
2 (irrespective of its size) obeys the same distribution law as 
system 1. In then follows from (1) and (7) that the probability 
of finding any subsystem of system 0 in a state with energy E is 
given by the Boltzmann-Gibbs (BG) distribution:

p E g E E
Z

( | ) ( )exp( )
( )

,β
β

β0
0

0 0

= −

                
(8)

where g(E) is the density of states and

Z g E E dE0
0

( ) ( )exp( )β β= −
∞

∫
                   

 (9)

is the partition function.

It is important to emphasize here that the key step in deriving 
(8) was the ability to partition the system into two independent 
subsystems of arbitrary sizes, so that each subsystem is 
described by the same distribution law. There are however many 
physical systems, where the relevant probability distributions 
depend on the scale at which the measurements are made. In 
such complex systems, the system cannot be partitioned into 
independent subsystems of arbitrary sizes, and one has to treat 
each dynamical scale separately, as discussed next.

THE MULTICANONICAL DISTRIBUTION

Here we consider a multiscale system of size L in thermal 
equilibrium at temperature T0. We assume that the 
system possesses a hierarchy of dynamical structures of 
characteristic sizes ℓi = L/bi − 1, with i = 1, 2, ..., n, where b 
is a number greater than 1. (The specific value of b is not 
relevant here.) We suppose furthermore that there is a wide 
separation of time scales within this hierarchy with smaller 
structures having shorter characteristic times. Let us now 
consider a partition of our system into “nested” subsystems 
of sizes ℓj , as indicated in Fig. 2. We shall designate the 
subsystem of size ℓj by the label j. The “thermodynamic 
state” of each subsystem j will be characterized by only one 
parameter, namely, its inverse temperature βj. As before, we 
designate the combined system consisting of all subsystems 
by the label 0.

Figure 2: A multicanonical system in thermal equilibrium at temperature 
T0.

Let us now focus our attention on the subsystem n of size ℓn. 
Since ℓn is the smallest characteristic length scale in the system, 
it is clear that this subsystem can be arbitrarily divided into two 
independent subsystems. Thus, repeating the same reasoning 
that led to Eq. (8), one obtains that the energy distribution law 
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for this subsystem is given by

p E g E E
Zn

n

n

( | ) ( )exp( )
( )

.β
β

β
= −

0                 
(10)

Note, however, that owing to the (intermittent) energy 
exchange between subsystem n and its immediate surrounding, 
represented by subsystem n − 1, the parameter βn is no longer 
constant but rather will fluctuate randomly. If we denote by 
f (βn) the probability density function (PDF) of βn, then the 
marginal distribution p(E) for subsystem n reads

p E g E E
Z

f dn

n
n n( ) ( ) exp( )

( )
( ) .= −∞

∫
β
β

β β
00              

(11)

Next we wish to compute f (βn). To do so, we shall make use of 
Bayesian analysis [9]. First recall that subsystem n is embedded 
in a much larger subsystem n − 1, characterized by the 
parameter βn − 1, which is assumed to vary much slower than βn. 
We are thus interested in computing f (βn|βn − 1). From Bayes’ 
theorem [9] one has

f E p E fn n n n n( ; | ) ( | ) ( ; ),β β β β β− −∝1 1              (12)

where βn−1 is considered a (hyper)parameter of the 
distribution of βn. In Bayesian parlance, the distribution 
f (βn; βn − 1) is called the prior distribution, p(E|βn) is the 
likelihood function, and f (βn; βn−1|E) is the posterior 
distribution. [In Eq. (12) we introduced the notation 
f (βn; βn − 1) / f (βn|βn − 1) for convenience.]

Let us assume, as is often done in Bayesian analysis, 
that the prior distribution is conjugate to the likelihood 
p(E|βn), meaning that the posterior distribution follows 
the same parametric form as the prior distribution. If 
we consider the rather general case where g(E) ? Eγ −1, 
γ > 0, so that Z0(βn) ? βn

−γ, it then follows from Eq. (8) that 
p(E|βn) is given by
p E E En n n( | ) exp( ),β β βγ γ∝ −−1

              
(13)

which when viewed as the likelihood of the parameter βn is 
proportional to a gamma distribution. Now, it is well known 
[9] that in this case the conjugate prior is also a gamma 
distribution, and so we have

f n n
n

n

n

n

n

( | )
( )

exp ,β β
β α

αβ
β

αβ
β

α

−
−

+

−

=
+









 −









1

1

1

1

1
1Γ

          

(14)

where α is a constant. In obtaining Eq. (14) we also used the 
fact that β β βn n n| ,− −=1 1 as it should, since subsystem n − 1 
acts as a heat reservoir for subsystem n. By scale invariance, we 
assume that the distribution f (βj|βj − 1), for j = 1, ..., n, has the 
same form as in Eq. (14).

We now have

f f f dn n n n n( ) ( | ) ( ) .β β β β β= − − −

∞

∫ 1 1 1
0              

(15)

Using this relation recursively then yields

f f d dn j j n
j

n

( ) ( | ) ,β β β β β=
∞

− −
=

∞

∫ ∏∫ 

0
1 1 1

10             
(16)

with f (βj|βj − 1) given by Eq. (14). After inserting Eq. (16) into 
Eq. (11), and performing a sequence of changes of variables 
of the type xj = αj βj /βj − 1, one can show that the resulting 
multidimensional integral can be expressed in terms of known 
higher transcendental functions:

p E g E
Z

F E
n

n
n( ) ( ) ( , , ; ),= + + + + − −

0 01 1α γ α γ β α

     
(17)

where nF0(α1 , ..., αn; -z) is the generalized hypergeometric 
function of order (n, 0) [10]. The small-scale partition function, 
Zn, is given by

Z Zn

n

= +
+ +









0 0

1
1

( ) ( )
( )

.β
α α
α γ

γ Γ
Γ

              

(18)

One important property of the generalized hypergeometric 
(GHG) distribution given in (17) is that it exhibits power-
law tails of the form: p(E) ? E−(α + 2) , for E "∞. This follows 
immediately from the asymptotic expansion of the function 
nF0 [11]: nF0(α1 , ..., αn; -x) = Σ i

n
iC x O xn

=
− +1 1 1α ( ( / )),

as x " ∞. It is also worth pointing out that the first two 
members of the family nF0 yield elementary functions, namely, 
0F0(x) = exp(x) and 1F0(1/(q − 1), x) = expq (x/(q − 1)), where 
expq (x) is the q-exponential: expq (x) = [1 + (1 − q)x]1/(1 − q). 
The GHG distribution with n = 0 thus recovers the Boltzmann-
Gibbs distribution, whereas for n = 1 it gives the q-exponential 
or Tsallis distribution [7]. One then sees from the preceding 
discussion that if a system with only one time scale is in thermal 
equilibrium then the Boltzmann-Gibbs distribution follows, 
whereas if it has two distinct time scales the Tsallis distribution 
should be applicable. For complex systems with more than 
two characteristic time scales, such as turbulent flows, GHG 
distributions of higher order are thus required [5, 6].

CONCLUSIONS

We have presented an alternative derivation, based on Bayesian 
analysis, of the multicanonical distribution, which describes 
the statistical equilibrium of complex systems possessing a 
hierarchy of time and length scales. We have shown that the 
multicanonical distribution can be written explicitly in terms of 
generalized hypergeometric functions, which exhibit a power-
law asymptotic behavior. This thus shows that the emergence 
of power law distributions —an ubiquitous feature in nature—
is intimately connected with the existence of multiple time and 
length scales in the system.
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