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Coulomb glasses are materials with electron states localized 
by the disorder under conditions of long-range interactions 
between their particles. One realization of a Coulomb glass is 
a doped semiconductor at low temperatures. Another example 
is granular metals. Coulomb glasses show complex dynamics 
typical for other complex systems: sluggish, non-exponential, 
relaxation of the conductance as well as aging and memory 
effects similar to those observed in structural glasses. We report 
dynamical Monte Carlo simulations of relaxation processes in 
a Coulomb glass. Both the relaxation to equilibrium following 
an initial temperature quench and during and after a driving 
by a strong current is studied. We see that out of equilibrium 
there is an effective electron temperature established on a short 
timescale, and this relaxes slowly to the bath temperature. We 
also study the response of the system to an external perturbation 
and observe how it relaxes after such a perturbation. Both from 
a random state and after a perturbation from equilibrium we find 
that the effective temperature relaxes logarithmically.

Los vidrios de Coulomb son materiales con estados electrónicos 
localizados debido al desorden, cuyas partículas poseen una 
interacción de Coulomb como, por ejemplo, un semiconductor 
dopado a baja temperatura, y un metal granular. Los vidrios 
de Coulomb muestran una dinámica típica de otros sistemas 
complejos: relajación lenta y no exponencial de la conductividad, 
y efectos de memoria similar a los observados en vidrios 
estructurales. En este trabajo, describimos simulaciones de 
Monte Carlo dinámicas de los procesos de relajación en vidrios 
de Coulomb. Estudiamos la relajación hacia el equilibrio, 
después de un enfriado rápido, y durante y después de una 
perturbación con una corriente eléctrica. Observamos que, 
fuera del equilibrio, se establece rápidamente una temperatura 
efectiva del sistema electrónico, y que éste relaja lentamente 
hacia la temperatura del baño. Estudiamos la respuesta del 
sistema a una perturbación externa, y la relajación después de la 
perturbación. Observamos que, en ambos casos, la temperatura 
efectiva muestra una relajación logarítmica.

PACS: Amorphous semiconductors glasses, 71.23.Cq; Disordered solids, 72.80.Ng; Hopping transport, 72.20.Ee

INTRODUCTION

At low temperatures, disordered systems with localized 
electrons (e.  g., located on dopants of compensated doped 
semiconductors or formed by Anderson localization in 
disordered conductors) conduct by phonon-assisted hopping. 
The theory of this process goes back to around 1970 and is 
well studied, see Ref.  [1] for a review. In recent years, there 
has been increasing interest in the non-equilibrium dynamics 
of hopping systems. In particular, the glass-like behavior at 
low temperatures has been studied both experimentally [2] 
and theoretically [3]. In this work, we are interested in two 
features observed in the experiments. Firstly, it was observed 
that the conductivity relaxes logarithmically as a function of 
time after an initial quench or perturbation [2]. Secondly, 
if the system initially in equilibrium is perturbed by some 
change in external conditions (e.  g., temperature or electric 
field) for a time tw called the waiting time, the relaxation back 
towards equilibrium of some quantity like the conductance 
G(t,tw) will depend both on tw and the time t since the end of 
the perturbation. It is found in certain cases that the relaxation 
is in fact described by a function G(t/tw) of the ratio t/tw. This 
behavior is called simple aging [2].

While simple aging is observed in a range of different systems, 
we are here particularly concerned with experiments on 
disordered InO films and porous silicon [2]. The relevant 
experimental facts can be summarized as follows: (i) After 
a quench from a high temperature state, the relaxation of 
conductance is close to logarithmic. (ii) The same is true after 
driving the system by a strong current. The rate of relaxation 
depends on the time the system was driven out of equilibrium 
(waiting time, tw). When scaled with the waiting time, all 
curves collapse (simple aging). (iii) If the driving field is too 
strong, simple aging is no longer observed. (iv) If the waiting 
time is too long, simple aging is no longer observed. 

One question which has been raised is whether the 
observed glassy behavior is an intrinsic feature of the 
electron system, or a result of some extrinsic mechanism 
like ionic rearrangement [4]. In this work, we address the 
intrinsic mechanism by performing dynamical Monte 
Carlo simulations of the standard lattice model of the 
electron glass. It is known [3] that during a quench from 
an initial random state an effective electron temperature, 
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Teff, is quickly established, and that this temperature 
slowly relaxes to the bath temperature. We show that the 
electron temperature relaxes logarithmically over almost 
three decades in time and that the system demonstrates simple 
aging behavior in a stress aging protocol (driving by a strong 
electric current) similar to what is seen in the experiments. 
While this does not constitute a proof of the intrinsic origin 
of the glassy behavior, it shows that the model can display the 
observed behavior.

MODEL

We use the standard tight–binding Coulomb glass 
Hamiltonian [1],

H n
n K n K

ri
i

i
i j

iji j
= +

− −
∑ ∑

<


( )( )

,
                  

(1)

K being the compensation ratio. We take e2/d as our unit 
of energy where d is the lattice constant which we take as 
our unit of distance. The number of electrons is chosen to 
be half the number of sites so that K=1/2. ei are random 
site energies chosen uniformly in the interval [-U, U]. In 
the simulations presented here we used U = 1, which we 
know gives a well-developed Coulomb gap and the Efros-
Shklovskii (ES) law for the conductance [5, 6]. The sites 
are arranged in two dimensions on a L × L lattice where 
in all cases we used L = 1000, which is sufficiently large 
to give a good estimate of the effective temperature in a 
single state without any averaging over a set of states. We 
implement cyclic boundary conditions in both directions. 

To simulate the time evolution we used the dynamic Monte 
Carlo method introduced in Ref.  [5], for a more detailed 
description, see Ref.  [7]. In all our simulations we used a 
phonon temperature T = 0.05, which we know is well into 
the ES regime for variable range hopping. The graphs show 
the evolution over 108 jumps. 

RELAXATION AND EFFECTIVE TEMPERATURE

Let us first relax from an initial random state and measure 
Teff(t). Shown in Fig. 1 are the energy (inset) and the effective 
temperature as functions of time. As we can see, the energy 
graph has almost stopped to decrease, indicating that we have 
almost reached equilibrium. The same is seen by the effective 
temperature, where Teff = 0.054, close to the real temperature 
T = 0.05, in the final state. We see that the effective temperature, 
after some initial short time, logarithmically decreases in time 
for about two and a half orders of magnitude. The energy 
does not show this behavior (as discussed in Ref. [8], it is well 
fitted by a stretched exponential function). We then applied an 
electric field E = 0.1 (in units of e2/d). Shown in Fig. 2 (left) is the 
energy per site as a function of time. The effective temperature 
as a function of time is shown in Fig. 2 (left, middle curve). 
Noting the difference in the timescales we conclude that the 
energy stabilizes at a new value much faster than the effective 
temperature. 
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Figure 1:  Effective temperature as function of time. The inset shows the 
energy as function of time. 

0 200 400 600
−0.354

−0.3535

−0.353

−0.3525

−0.352

−0.3515

−0.351

−0.3505

t

E
ne

rg
y/

si
te

0 2000 4000 6000
0

0.2

0.4

t

Fr
ac

tio
n 

of
 s

ite
s 

ac
tiv

e

 
0 2000 4000 6000

0.04

0.06

0.08

0.1

0.12

0.14

t

T ef
f

Figure 2:  During driving with E = 0.01. Left: Energy as function of time. 
Inset: The fraction of sites involved in a jump as function of time. Right: 
Effective temperature as function of time. The curves are from top to 
bottom the temperature of the sites which were active, the temperature 
of all sites and the temperature of the sites which were not active. The 
vertical lines indicate the waiting times in the stress aging protocol (see 
Fig. 5). 

We have also plotted the effective temperature taking into 
account only those sites which were involved in a jump, 
Fig. 2 (bottom, upper curve), and those which did not jump, 
Fig. 2 (bottom, lower curve). As we can see, the sites which 
are not involved in jumps are still at a temperature close to 
the phonon temperature. This is not a trivial statement, since 
the energies of the sites which are not involved in jumps also 
change due to the modified Coulomb interactions with the 
sites that jumped. Note that even at the latest time shown, new 
sites are still being involved, see Fig. 2 (top, inset), even if the 
energy and effective temperature are more or less stable. When 
driving with stronger fields we observed some heating also 
of the sites not involved in any jumps, while the distribution 
remained close to a Fermi distribution so that the concept of 
temperature sill has a meaning. 

This is shown in Fig. 3. In particular we find it remarkable that 
also the sites never involved in transitions show a good fit to 
the Fermi distribution. Normally, we think of energy levels as 
fixed and occupation numbers changing dynamically in such a 
way as to maintain the Fermi distribution in the time averaged 
occupation probabilities. If the energy levels are shifted by 
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Figure 3:  When driving with electric field E = 1. Top: Teff as function of 
time. The curves are from top to bottom the temperature of the sites 
which were active, the temperature of all sites and the temperature of 
the sites which were not active. Bottom: Fitted Fermi functions at time 
t = 19. Left: All sites, Center: Sites which took part in a transition, Right: 
Sites which did not take part in a transition. The points are the data and 
the curve the fitted function. 

some process, the transition rates also have to change, and the 
occupation numbers will adjust to the new energy level. In 
our case we have that the occupation numbers of the sites not 
involved in transitions are fixed, while their energies are pushed 
around by the interactions with the jumping sites. A natural 
guess would be that there is no correlation between the energy 
of a site before the driving starts (and hence the occupation 
probability of that site) and the shift it receives during driving. 
One would then guess that the initial Fermi distribution at 
the real phonon temperature would be scrambled during the 
driving, and that for the sites not involved in jumps we would 
not find a well defined Fermi function. The fact that this does 
not happen indicates that there is certain structure to the 
nature of the shifts of the energies, and would be an interesting 
point for further study.

The heating process can also be illustrated in another manner. 
In Fig. 4 is shown the single particle density of states (DOS) at 
different times after the start of the driving with E = 0.1 (the 
same as in Fig. 2). Curves for the total DOS as well as for the 
sites involved and not involved in jumps are shown. The total 
DOS shows initially a Coulomb gap corresponding to the real 
phonon temperature. This changes into the more smeared 
Coulomb gap of Teff on a rather short time-scale. On times 
longer than this, the curves for jumped and non-jumped sites 
keep changing as more and more sites are involved in jumps. 
Thus, the state of the system keeps evolving for times much 
longer than the one needed for the overall Coulomb gap to 
adjust to the effective temperature. 
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Figure 4:  When driving with E = 0.1. The density of states at the times 
t = 12.5, 1426, 2851, 4275, and 5696. For the graphs of all sites and jumped 
sites the lower curves correspond to earlier times and the higher curves to 
later. For the not jumped sites lower curves correspond to longer times. 

STRESS AGING

We now follow the stress aging protocol. This means applying 
a non-Ohmic field for a certain time tw and then turning this 
field off. The heating process of Fig.  2 is exactly such a non-
Ohmic driving, and we need only start simulations with zero 
fields at different points along this curve. We have chosen six tw, 
which correspond to the points marked on Fig. 2 with vertical 
lines.

Figure 5 shows the effective temperature as function of 
t/tw after the end of the driving period. Note that the time 
dependence of the energy is very similar in all cases as shown in 
Fig. 5 (inset). From Fig. 5 we conclude that there is a logarithmic 
relaxation of the effective temperature after a driving by a non-
Ohmic field just as in the case of relaxation from a random 
initial state (Fig.  1). Furthermore, we see that the curves for 
different tw collapse when time is scaled with tw when tw is 
smaller than some critical value tw

(c) ≈  2500. The curve for tw 
= 2865 seems to lie a little to the left of the collapse curve, and 
for  tw = 5696 this tendency is clear. The collapse of the curves 
for short tw is similar to what is observed in the experiments 
both on indium oxide films and porous silicon [2]. In the case 
of porous silicon, also the departure from the simple aging 
at longer waiting times was observed, while sufficiently long 
times were never reached in the case of indium oxide. 

If we compare to Fig.  2 (right) we see that the critical value 
tw corresponds to the time where the effective temperature 
stabilizes. Comparing to Fig. 2 (left) we see that this is a time 
much longer than the one, which is needed for the energy to 
stabilize.

We also repeated the stress aging protocol at different driving 
fields, E = 0.05, 0.2, 0.5 and 1. Note that to be in the Ohmic 
regime we should have  E T/10, so all the fields are well 
outside of this. For E = 0.05 the effective temperature as 
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Figure 5:  After driving with E = 0.1. Teff as function of t/tw. Inset: Time 
dependences of the energy for different tw.

function of t/tw is shown in Fig. 6 (left). As we see, the general 
behavior is the same as when driving with E = 0.1. For E = 0.2 
the effective temperature as function of t/tw is shown in Fig. 6 
(right). We see that the curves do not collapse satisfactorily, 
even for tw shorter than the time at which Teff stabilizes. 
This behavior is also observed in the experiments [2], it is 
characteristic for stronger fields. Further details on these 
simulations can be found in Ref. [7]. 
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Figure 6:  Left: After driving with E = 0.05. Teff as function of t/tw. Inset: 
The heating curve. Right: After driving with E = 0.2. Teff as function of 
t/tw. Inset: The heating curve. 

CONCLUSIONS

Using the standard lattice model for the Coulomb glass we 
have demonstrated logarithmic relaxation of the effective 
temperature after a quench from a random initial state. The 
same is observed after driving by some non-Ohmic electric 
field. In the latter case we also observe simple aging when the 
driving field is not too strong and the waiting time not too long. 
At longer waiting times or after driving with stronger electric 
fields we observe departure from the simple aging qualitatively 
similar to what is seen in experiments. This provides support 
to the idea that the observed behavior is an intrinsic feature of 
the electronic system.

The Monte Carlo approach allows us to access several 

properties, which are not available either in the experiments 
or the mean field theory. When applying a non-Ohmic field 
both the average energy and the effective temperature increase 
and saturate at a level above the equilibrium one. We find that 
the saturation of energy is much faster than the saturation of 
effective temperature.

We also see that the heating mainly affects those sites which 
were involved in jumps. At moderate driving fields the energies 
of the remaining sites are shifted by the changing Coulomb 
interactions, but there is no systematic shifts, and the best fitting 
Fermi distribution is still at or close to the bath temperature. 
At stronger fields there is also some heating of the sites which 
were not involved in jumps, and the distribution still follows a 
Fermi function. 
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