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Sumario. La existencia de soluciones radiales a un problema de Dirichlet no lineal en una región esférica es traducida 
al lenguaje de la Mecánica, es decir se expresa como requerimientos sobre el tiempo en que se mueve una partícula en 
un potencial externo y sujeta a la acción de una fuerza viscosa. Esta forma de abordar el problema nos brinda un méto-
do cualitativo, pero riguroso, de analizar el caso general. Teoremas conocidos son fácilmente reproducidos. Se dan 
ejemplos de nuevos teoremas, los cuales prueban la utilidad de este método cualitativo.   
 
Abstract.  The existence of radial solutions to a nonlinear Dirichlet problem in a ball is translated to the language of 
Mechanics, i.e. to requirements on the time of motion of a particle in an external potential and under the action of a vis-
cosity force. This approach provides a qualitative, but rigorous, method for the analysis of the general case. Known 
theorems are easily reproduced and examples of new theorems are given, which prove the usefulness of this qualitative 
method. 
 
Palabras claves:  Ordinary differential equations 02.30.Hq, Nonlinear dynamics and chaos 05.45.-a, Formalisms in 
classical mechanics 45.20.-d.   
 

 
1 Introduction  
 
In the present paper, we consider the following nonlinear 
Dirichlet problem: 

  
where f is a differentiable function and � is the ball of 
radius R in RD. We look for conditions guaranteeing the 
existence of spherically symmetric solutions to (1-2). 

The above mentioned problem has been extensively 
studied in the past (see, for example, ref. [1-5] and refer-
ences therein). In this paper, our purpose is to develop a 
very simple picture, based on Mechanics, for the analysis 
of the existence of solutions to (1-2). This qualitative 
picture reproduces the existing results and, in principle, 
provides a frame for the analysis of the radial solutions 

to (1-2) in the presence of an arbitrary nonlinear function 
f. Examples of new theorems are given, which show the 
usefulness of the method. 

To our knowledge, the analogy of the radial equation 
(1) with the Newtonian law of motion of a particle was 
first used by Coleman6 to obtain the approximate form of 
the solution connecting false and true vacua in scalar 
field theories. This solution enters the semiclassical 
expression for the decay probability of the false vacuum 
state. Application of this analogy to the analysis of the 
existence of solitary waves in nonlinear one-dimensional 
media has proven to be very useful too7. 

The plan of the paper is as follows. In the next Sec-
tion, the problem about the existence of solutions to (1-
2) is translated to the language of Mechanics. Two limit-
ing solvable cases, the one-dimensional problem and the 
linear equation, are considered and a few general results 
are given. Let us stress that the function f(u) is inter-
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preted as the derivative of a potential, thus the linear 
equation describes the motion in a quadratic potential. 
Section 3 deals with potentials having a well around u = 
0. The most interesting examples studied in this Section 
are, in our opinion, the potentials with barriers. In Sec-
tion 4, we study the motion in a potential with a hill 
around u = 0. In Section 5, we consider singular (finite 
and infinite) potentials. Concluding remarks are given at 
the end of the paper. 

 
2 The analogy with mechanics 
 
We start by considering the spherically symmetric ver-
sion of Problem (1-2): 

 
Written in this form, the analogy with Mechanics is 

evident. Equation 3 is nothing, but the Newton law for a 
particle of unit mass moving in a potential V which is the 
antiderivative of f, f(u) = dV/du, and under the action of a 
viscosity force inversely proportional to time. The par-
ticle should start with zero velocity from a position u(0) 
and arrive to u = 0 in a time R (Fig. 1(a)). 
 

We have drawn in Fig. 1(b) a generic positive solution 
to (3-4) for a given V. In general, the particle will realize 
damped oscillations around the point u = 0 (Fig. 2). Let 
Tn (u(0)) be the time the particle spends to reach the 
point u = 0 n times starting from u(0). Thus, the exis-
tence of a solution to (3-4) may be formulated in the 
following terms: 

“In the potential V, there exists a u(0) and a positive 
integer, n, such that Tn(u(0)) = R” 

The interesting point is that in many cases we may 
perform simple estimates, based on physical principles, 
of the dependence Tn vs u(0) and, consequently, we may 
give criteria for the existence of solutions to (3-4). 

Let us first study two limiting cases in which equation 
(3) may be solved exactly. They will be very useful in 
the analysis below. 

2.1 The one-dimensional (D = 1) problem.  The 
D = 1 case is characterized by the absence of friction. 
Thus, the energy   E = (1/2)(du/dr)2 + V (u)  is conserved, 
dE/dr = 0, and the dependence r(u) may be expressed in 
the form of an integral in each interval where du/dr does 
not change sign, 

 
In such conditions, the motion of a particle in a well is 

a periodic motion characterized by the function T1 

 
(For negative u(0) the integration limits shall be re-

versed). Note that Tn may be expressed in terms of T1: 

 
where [q] means the integer part of q, and u-(0) is de-
fined from V (u+(0)) = V (u-(0)) = E. 

For a given potential, the equation Tn = R may be ex-
plicitly written and the existence of solutions to Problem 
(3 - 4) may be explicitly investigated. 

We are not going to give further details of the analysis 
in this simple case and turn out to the higher dimensional 
(D > 1) problem, i.e. motion with friction. In this situa-
tion, there is another exactly solvable problem: the mo-
tion in a quadratic potential. 

 
Figure 1. (a) The analogy with Mechanics, (b) A positive 
solution to (3 - 4) corresponding to the situation depicted in 
(a). 

 
Figure 2: A generic damped oscillating function u(r) describ-
ing the motion of a particle in V. 

 
2.2 Motion in a quadratic potential (The linear 

equation).  We consider a quadratic potential 
.  The equation of motion (3) takes the 

form 

 
The solution of this Eq. with initial condition du/dr (0) = 
0 is expressed as 

 
where J is the Bessel function8. It is important to note 
that the main properties of the solution may be unders-
tood simply from the invariance properties of Eq. (8). 

LEMMA: Tn does not depend on u(0) and is propor-
tional to . 

PROOF: The Eq. is invariant under a change in the 
scale of u, and also under the transformation     r � Cr r,   

, where .  

According to this Lemma, the function Tn (u(0)) takes 
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a fixed value that depends only on   and n. Varying 

appropriately the parameter  (the potential), one may 
fulfill the requirement Tn = R. The corresponding set of 
parameters, { n� }, defines the eigenvalues of the linear 
problem. 

2.3  Some useful results.  In this subsection, we 
derive a few general results following from the analogy 
with Mechanics and classify the potentials to be studied. 

In the presence of dissipation, the rate of change of the 
energy is written as 

 
i.e. u(r) is damped, as mentioned above. It means that  
E (u(0)) = V (u(0)) > E (0) > V (0) = 0 (we have sup-
posed that f is integrable, so that V (u) may be defined as 

 ). Then, we arrive at the following  
THEOREM (A necessary condition): If u(r) is a solu-

tion to (3 - 4) and f is integrable, then u(0) is such that  

 
The last condition on the sign of f(u(0)) means that the 

particle shall be pushed towards the origin at the initial 
position, u(0). Otherwise, it will never move to the origin 
passing through u(0) because of the energy losses.  

More sophisticated versions of this Theorem will be 
formulated below when studying potentials with barriers. 

A second important result concerns the retardation ef-
fect of friction. Let us suppose that the particle moves 
from ua to ub. The time it spends in this motion may be 
written as 

 
(10) 

Of course, this is not a closed expression because the 
derivative in the time interval (ra, rb) enters the r.h.s. of 
it. However, it is evident that 

 
i.e. 

LEMMA: The time interval rb - ra is greater than the 
time the particle spends to move from ua to ub without 
friction. 

Finally, let us classify the potentials according to their 
properties in the neighborhood of u = 0. In the present 
paper, we will study four classes of potentials having 
different behaviors in the vicinity of this point (Fig. 3): 

(a) The wells are defined as concave potentials around 
u = 0. 

(b) The hills are convex around u = 0. Of course, at 
large �u�, V (u) shall be positive (the necessary condi-
tion). 

(c) and (d) correspond to singular potentials. 
We will study below each class of potentials separately.  

 
Figure 3. Different possibilities for the neighborhood of u = 0: 
(a) Well, (b) Hill, (c) Finite, but singular, (d) Infinite, singular 
potential. 
 
3  Wells around u = 0 
 
A well is defined as a region with only one local extre-
mum, the minimum at u = 0. In this Section, we study 
some examples of potentials having a well around u = 0. 

3.1 Potentials, quadratic in u = 0 and �u��  � 
Let V (u) be a potential such that 

 
additionally, we will assume that the only zero of f is at u 
= 0. Then, we have the following 

THEOREM:  If   and , then Prob-
lem (3 - 4) has at least 2k + 1 solutions. 

This Theorem was obtained in ref. [5]. We will give a 
detailed proof of it by means of our method as an illu-
stration. For the incoming Theorems, the proof will be 
shortened. 

The statement is that the function Tn vs u(0) has the 
form depicted in Fig. 4 for 1 � n � k, i.e. for each Tn  

there are two solutions. 
Indeed, the very small amplitude motion is governed 

by the u � 0 behavior of V. Tn depends very smoothly 
on u(0) in this region and Tn � T1 > R. The latter inequa-
lity comes from  . 

On the other hand, the large amplitude motion is go-
verned by the �u�� � asymptotic behavior and, ac-
cording to the inequality  ,  we have Tn � Tk < 
R. The point to clarify is why Tn for large u(0) is not 
affected by the small-u behavior of V. 

The answer is that, when u(0) is large, the time the 
particle spends to move in the small-u region is negligi-
ble. This result comes from the scale invariance of the 
quadratic potential as shown in Fig. 5. Shadowed areas 
correspond to motion in the region �u�< ua. It is seen 
that when �u(0)�� � the time spent in this motion 
shrinks to zero. It means that one can deform V(u) at low 
�u� without changing significantly Tn.  
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Thus, Problem (3 - 4) has 2k nontrivial solutions plus 
the trivial u = 0. 

3.2  Potentials with barriers. In the previous Sub-
section, we assumed continuity of Tn vs u(0). However, 
continuity is broken when V has local extrema, others 
than u = 0. The point is that, as may be seen from Eq. (5) 
and the retardation Lemma of Section 2.3, the time the 
particle spends to move out of a local maximum tends to 
infinity when u(0) approaches the position of the maxi-
mum. 

Then, let us first suppose that f has a unique second 
zero at a point a > 0. The following Theorem may be 
formulated  

THEOREM. If  and V�u(0) � - � > V(a), 
then Problem (3 - 4) has at least k solutions with 0 < u(0) 
< a. 

To prove it, we draw again the function Tn(u(0)), with 
1 � n � k and positive u(0). At low u(0), Tn � Tk < R. 
When u(0) � a from below, Tn � �. The condition on 
V(-�) guarantees that the motion is oscillatory around 
u(0) and the particle does not escape to  -�. 

Note that it is difficult to draw the dependence Tn vs 
u(0) for negative u(0) without knowledge of the poten-
tial. The following Theorem, contained in ref. [5], states 
that for asymptotically quadratic potentials one can say 
much more. 

THEOREM. If f has positive zeros, the first of which 
is at u = a, and �(0),  > , then Problem (3 - 4) has 
at least 4k - 1 solutions. 

We have drawn in Fig. 6 the potential and the func-
tions T1, Tn, 1 � n � k. The points b+ and b_ are defined in 
the monotone regions. They satisfy V (a) = V (b+) =  
V (b-). Dashed lines means that the curves are condition-
ally drawn, while shadowed intervals of u(0) mean phys-
ically impossible initial conditions. 

The dependence of T1 on u(0), when 0 < u(0) < a, is 
the same as in the previous Theorem. For very large 
positive u(0), T1 is determined by , i.e. T1�u(0) �  

� < Tk < R. On the other hand, because of energy losses, 
if the particle starts from b+ it will not reach the origin. 
By continuity, there exists c1 > b+ such that the particle 
arrives at a with zero velocity. This corresponds to an 
infinite T1. When u > c1 the particle reaches the origin 
and the dependence T1(u(0)) is shown. Note that we can 
not say anything about T1 for negative u(0). Thus, the 
equation T1 = R will have, at least, two solutions. 

Similar arguments are used in the analysis of Tn, 1 < n 
� k. Cn is now defined such that when u(0) > cn the ori-
gin is reached n times. Note that Tn (cn) = � and also that 
c1 = c 2 < c3 = c 4 < c 5 … On the l.h.s. of the origin, we 
can define the points en < d < b- d is such that when the 
particle arrives to a it does so with zero velocity, while 
en  is such that for u(0) < en, the particle reaches the ori-
gin n times. Note that e2 = e 3 > e 4 = e 5 > e 6… In other 
words, for each n there are 4 solutions. This proves the 
theorem. 

Notice that, unlike papers in ref. [1-5], we are able to 

indicate forbidden regions for u(0). This is a generaliza-
tion of the necessary condition of Section 2.3. 

 

 
Figure 4. Dependence Tn vs u(0) for the potential considered in 
Section 3.1. 
 

 
Figure 5. A consequence of the scale invariance of the qua-
dratic potential. The shadowed areas correspond to motion in 
the region �u�< ua. When �u(0)�� �, the time spent in this 
motion shrinks to zero. 

 
3.3  The potentials V = g�u��. Let us now consid-

er the potentials V = g�u��, with g > 0, � > 1. We shall 
first prove that, whatever � be, u(r) will have the form 
drawn in Fig. 2. After that, we will use scale-invariance 
properties of the equation of motion to obtain the depen-
dence Tn vs u(0). Let us prove the following general  

LEMMA. In a potential well, u(r) is an oscillating 
function of decaying amplitude. 

PROOF. It is evident that the particle will reach the 
origin whatever the initial position is. It can not stop in 
an intermediate point where the force is not zero. Thus, 
the question is how long it takes to reach the origin and 
what is the final velocity. If this time and the velocity are 
finite, we can repeat the argument to conclude that u(r) 
will have infinite zeros. 

Let ra be an intermediate time such that �du/dr (ra)�> 
0. Due to the particular form of the friction, we can ob-
tain an upper bound for the time to reach the origin start-
ing from u(ra), rb, and a lower bound for �du/dr(rb) �, if 
we neglect the potential for r > ra and solve the problem: 

 
which has the following solution 
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It means that u = 0 will be reached in a finite rb with a 
finite velocity and u(r) will have infinite zeros. 

Thus, let us now turn out to the dependence Tn vs 
u(0) in the potentials V = g�u��. The equation of motion 
takes the form 

 
The properties of Tn following from the scale inva-

riance of the equation are given in the next Lemma: 
LEMMA. For fixed g, Tn ~ �u(0)�1 – �/2, while for 

fixed u(0), Tn ~ g -1/2.  
Thus, for every n, the equation Tn = R will have two 

solutions, and we arrive to the following 
THEOREM. Problem (3-4) with V = g�u��, g > 0, � 

> 1 has infinite solutions3. 
One can now combine these with previous results. In 

quality of example, let us formulate the following 
THEOREM. Let  and  V��u� �  � ~ �u��, 

with �  > 2, then solutions to Problem (3-4) with any n � 
k zeros exist.  

The curve Tn vs u(0) for n � k may be easily drawn in 
this case. Note that the dependence of Tn��u� �  �  on 
the low-u(0) properties of V is, for � > 2, weaker than in 
the quadratic potential. 
 
4  Hills around u = 0 
 

We now study the motion in a potential like that one 
shown in Fig. 3 b. For simplicity, we assume that V is 
quadratic near zero ( ) and also quadratic at 
large values of u. No additional zeros of f exist. Then 
one can formulate the following 

THEOREM. If   and , then Prob-
lem (3 - 4) has 2k +1 solutions. 

We have drawn in Fig. 7 the curve Tn vs u(0) for 1 � n 
� k. The large-u(0) behavior of it is evident. The points 
b+ and b_ are the zeros of V. The points cn and en are 
defined as in the previous Section, i.e. starting from the 
right of cn (the left of en) the particle may reach the ori-
gin n times. 

Note that would it start from cn (en), then it would ar-
rive to u = 0 with zero velocity, i.e. Tn (cn) = Tn (en) = �. 
Note also that b+ < c1 < c2..., b- > e1 > e 2  >…  Thus, for 
each n there are two solutions and the Theorem is 
proved. 
Other potentials could be analyzed, but we think the 
given example is enough to show the advantages of the 
method.  
 
5  Singular potentials 
 
The main property of the singular potentials, Figs. 3 c) 

and d), is that the force, -dV/du, at u = 0 is ill-defined. 
So, the motion is not well defined right after the particle 
reaches the origin, and we can only analyze the existence 
of positive solutions to (3 - 4). 

 
Figure 6. A potential with barriers and the corresponding 

T1(u(0)), Tn (u(0)), 1 < n � k. 

 
Figure 7. The curves Tn vs u(0), 1 � n � k, for the potential of 
Section 4. Notations are the same as in Fig. 6. 
 

An example of a potential like 3 c) is V = g�u��, with 
g > 0 and 0 < � < 1. Let us stress that the upper bound 
for rb and the dependence T1 ~ �u(0)�1 – �/2, obtained in 
the Lemmas of Section 3.3, are valid, so that the equa-
tion T1 = R has always a solution in this case. 

The same analysis holds for the potential  
V = - g�u�- �, with g, � > 0. This is a potential of the 
form 3 d). Scale invariance in this case leads to T1 ~ 
�u(0)�1 + �/2, so that the equation T1 = R will always 
have a solution too. 

We can now combine possibilities to obtain interesting 
situations. Let, for example, the potential V be quadratic 
at the origin with , while at long distances V ~ 
V0 - g�u�-�. No zeros of f exist, except the trivial at u = 
0. Then, we obtain the following 
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THEOREM. If , then Problem (3 - 4) has at 
least 2k + 1 solutions.  The proof is trivial. 
 
3 Concluding remarks 

 
In the present paper, we used the analogy of Eq. (3) 

with the second Newton's law in order to obtain exis-
tence theorems to Problem (3 - 4). In addition to repro-
ducing existing results, we give new examples of poten-
tials (of f) in which it is relatively easy to analyze the 
existence of solutions.  

We think the given examples show that the method is 
general enough to provide a first insight to the problem 
for any reasonable function f. After that, we may go 
further on in two ways: i) Use more rigorous methods to 
complete the proof and/or ii) Obtain numerical solutions 
to the equation. 
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