Abstract
Aluminum (Al) thin films are of great interest for applications in telecommunications, microelectronics, and the automotive industry, among others, due to their high conductivity, excellent optical properties and low weight. Their properties depend on the depositition technique and its parameters. In this work, the crystallographic, morphological, and optical characteristics of Al thin films grown by radio-frequency (RF) magnetron sputtering were analyzed. An aluminum target was used in an argon (Ar) atmosphere, and the effect of sputtering power on film properties was investigated. The samples were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and UV-Vis Spectroscopy. The crystalline quality improved with increasing power. AFM and SEM results revealed an increase in roughness, thickness, and grain size with higher sputtering power. UV-Vis spectroscopy showed lower diffuse reflectance at lower power across the 190-900 nm range. The enhancement of film properties is mostly attributed to the increased kinetic energy of sputtered species, directly related to the applied RF power.
References
[1] F. M. Mwema, O. P. Oladimeji, S. A. Akinlabi, and E. T. Akinlabi, J. Alloys Compd. 747, 306 (2018).
[2] B. Wu et al., Vacuum 150, 144 (2018).
[3] Iqbal and F. Mohd-Yasin, Sensors 18, 1797 (2018).
[4] M. D. Serna-Manrique et al., Coatings 12}(7), 979 (2022).
[5] R. S. Tondare et al., Mater. Today Proc. 5, 2710 (2018).
[6] Tchenka et al., Adv. Mat. Sci. Eng. 2021, 5556305 (2021).
[7] J. Wang et al., Appl. Surf. Sci. 515, 146053 (2020).
[8] M. K. Sandager, C. Kjelde, and V. Popok, Crystals 12, 1379 (2022).
[9] Y. Gao, H. Leiste, S. Heissler, S. Ulrich, and M. Stueber, Thin Solid Films 660, 439 (2018).
[10] Ponmudi, R. Sivakumar, C. Sanjeeviraja, and C. Gopalakrishnan, J. Mater. Sci.: Mater. Electron. 30, 18315 (2019).
[11] Liu, J. Peng, Z. Xu, Q. Shen, and C. Wang, Metals 13, 583 (2023).
[12] H. A. R. O. O. N. Ejaz et al., J. Appl. Chem. Sci. Int. 13, 41 (2022).
[13] M. Singh et al., Mater. Today Proc. 5, 2696 (2018).
[14] F. Madaraka et al., Mater. Today Proc. 5, 20464 (2018).
[15] K. Balasubramanian et al., Proc. SPIE 9602, 96020I (2015).
[16] Pogodin et al., Biophys. J. 104, 835 (2013).
[17] Zhou, T. Li, X. Wei, and B. Yan, Metals 10, 896 (2020).
[18] Iqbal et al., J. Mater. Sci.: Mater. Electron. 31}(1), 239 (2020).
[19] S. Yu, W. Xu, H. Zhu et al., J. Alloys Compd. 883, 160622 (2021).
[20] S. Asgary et al., Appl. Phys. A 127, 752 (2021).
[21] J. Li, G. K. Ren, J. Chen et al., JOM 74, 3069 (2022).
[22] J. Cheng et al., Chem. Eng. J. 509, 161242 (2025).
[23] Zöllner, Comput. Mater. Sci. 125, 51 (2016).
[24] Karoutsos et al., Coatings 14, 1441 (2024).
[25] L. Crouzier et al., Beilstein J. Nanotechnol. 10, 1523 (2019).
[26] G. Rincón-Llorente et al., Coatings 8, 321 (2018).
[27] C. A. Corrêa et al., RSC Adv. 14, 15220 (2024).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2025 Cuban Physical Society & Faculty of Physics of the University of Havana

