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The search for binary sequences with low auto-correlations (LABS)
is a computationally hard discrete combinatorial optimization
problem. We analyze two physically inspired algorithms to explore
the low energy space of this model. The greedy, T = 0, Monte Carlo
(MC) method gets trapped into the exponentially many 1-Spin-Flip
stable configurations, that are typically low in energy, but still far
from the global optimum. The more elaborated Warning Propagation
(WP) algorithm also gets trapped into local minima. However, these
local minima, are more stable to spin flips than the ones obtained by
the greedy MC. We also compare the behavior of both algorithms in
randomized versions of LABS, showing that the low energy space of
the 4-Spin model is easier to explore than the one of LABS.

La búsqueda de Secuencias Binarias de Baja Autocorrelación
(LABS) es un problema de optimización combinatoria difı́cil.
Analizamos dos algoritmos inspirados en la fı́sica para explorar el
espacio de bajas energı́as de este modelo. El algoritmo de Monte
Carlos (MC) a T = 0 queda atrapado entre la cantidad exponencial
de estados semi-estables que se encuentran en la región de bajas
energı́as pero lejos del mı́nimo global. El algoritmo de Warning
propagation (WP), más elaborado que MC, también queda atrapado
en esta región. No obstante los estados de baja energı́a que se
obtienen con WP son más estables que los obtenidos por MC.
Además comparamos el comportamiento de ambos algoritmos en
versiones aleatorizadas de este modelo, mostrando que la región
de baja energı́a del 4-Spin es más fácil de explorar que en LABS.

PACS: Statistical physics (fı́sica estadı́stica), 05.65.+b; complex systems (sistemas complejos), 89.75.Fb; optimization techniques (técnicas
de optimización), 87.55.de

I. INTRODUCTION

The Low Auto-correlation Binary Sequence (LABS) problem
consists in finding a binary sequence S = {S1,S2, ...,SN}where
Si ∈ {1,−1} for 1 ≤ i ≤ N that minimizes the function

E(S) =

N−1∑
k=1

Ck(S)2 (1)

where Ck(S) are the aperiodic auto-correlation coefficients

Ck(S) =

N−k∑
i=1

SiSi+k. (2)

Finding the optimal sequences is notoriously hard for
increasing values of N [1].

These low auto-correlation binary sequences have many
practical applications (see comments in [2]) like signal
processing [3, 4], Artificial Intelligence [5], and is connected
to the Littewood problem in Mathematics [6].

The problem has been largely studied using exact and
heuristic methods. The exhaustive search has a time
complexity of O(2N) and was used [7] to find optimal
sequences up to N = 32. Other works applied a Branch and
Bound algorithm, which is an exact method, reducing the
computational cost to O(cN) with c < 2. On [8] the value of
c was taken to c = 1.85, exploring sequence up to N = 48.
Later, on [9] it was proposed a new bound function with a

lower c = 1.8. On 2010, a more tight bound was proposed [10]
and the algoritmh was deployed on a GPU cluster, finding
the optimal sequences up to N ≤ 64 with c = 1.79. Finally,
on 2016, using a combination of the last two bounds in [2],
and with a estimate value of c = 1.729 it was possible to
find the best know sequences up to N ≤ 66. Despite these
sophisticated implementations and improvements it is clear
that this approach is not viable in the search of optimal
sequences with larger lengths, say N > 100, for instance.

Heuristic methods have also been largely studied, as the
evolutionary search [11], memetic algorithms [12] and
tabu search [13, 14] reaching sizes N ∈ [61 − 77] with a
computational cost of O(1.34N). A readable summary of the
application of different heuristic and stochastic algorithms to
LABS appears in [5] and [1]. The state of the art of heuristic
algorithms according to [2] seems to be the work [1] where the
authors combined a random self-avoiding walk in a Hasse
graph. However, as in the case of exact algorithms, these
complex and advanced heuristics fail in systems of relative
big sizes (N > 200) [2] leaving a lot of room for further
improvements.

In Statistical Physics, the low autocorrelation sequences can
be seen as the ground states of the Bernasconi’s model
[15], that implies the energy minimization of an Ising spin
system with long range interacting variables with four-fold
antiferromagnetic interactions.

This paper characterizes two well known simple physical
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inspired algorithms on LABS instances. First, Greedy Monte
Carlo (MC) and Warning Propagation (WP) are introduce and
compared showing that indeed, WP it is a better candidate
to look for low energy configurations of the LABS problem.
Later, WP is tested on disordered versions of LABS to shed
light on the structure relevance of the underlying graph.

II. PHYSICALLY INSPIRED ALGORITHMS

The minimization of the energy E(S) (cost function) can be
obtained by specific methods tailored for this very problem,
as those that are the state of the art for LABS, or conversely by
general standard techniques. While the former are currently
more efficient the later are easier to interpret and may open the
way to new disruptive ideas in the treatment of the problem.
The simplest of these algorithms is the greedy minimization
of the cost function. A simple greedy approach corresponds
in the statistical mechanics community to the Monte Carlo
method at T = 0, where variables are iteratively altered only
when the proposed changes reduce the energy. It can also
be seen as a discrete-variable version of a steepest descent
optimization method. Typically greedy algorithms are simple
to program and guaranteed to converge, but are prone to lock
on non-optimal solutions.

On the other hand, since the beginning of the century,
Message Passing algorithms have found their way in the
realm of the statistical physics community. The turning point
was the realization that message passing algorithms can be
viewed as fixed point equations derived from variational
approximations to the free energy of Ising-like models [16].
This inspired researchers to look for novel applications of
these algorithms in the field of Combinatorial Optimization
[17–19] and to explore new extensions [20–22].

In statistical physics the cost function is alternatively
interpreted as the Hamiltonian or the Energy of the model. In
the case of LABS (1) it can be represented by a standard factor
graph [16], where both the variables and their interactions
are graphically represented. Let take as an example the part
Ck=1(S)2 of the LABS hamiltonian (1) with N = 5 spins

Ck=1(S)2 =

 5−1∑
i=1

SiSi+1


2

(3)

= (S1S2 + S2S3 + S3S4 + S4S5)2

= const + 2(S1S3 + S2S4 + S3S5 +

S1S2S3S4 + S1S2S4S5 + S2S3S4S5).

Since Si = ±1 are binary, every square value S2
i = 1 can

be disregarded as constant. Intuitively, the goal is to find a
configuration of the variables that produces as many negative
summands as possible. Each summand coorresponds to an
interaction, represented in the factor graph as a square node
(see Fig. 1), while the variables interacting are represented as
circles, joined to their corresponding interactions by an edge
in the factor graph. Factor nodes index will be referred using
a, b, c letters, and i, j, k for refer to the variables index. The
notation N(a) will be used to refer the set of variables that

interact with the factor node a, and similar N(i) for the set of
factor nodes that interact with variable i.

1 2 3 4 5

Figure 1. Graphical representation of equation (3). The variables (circles)
are connected to interactions (square nodes). In gray, the three first terms
(connecting only two variables), in black the other three 4-spins interactions.

II.1. Greedy minimization: Monte Carlo at T = 0

The condition for a given configuration {S1,S2, . . . ,SN} to be a
local energy minimum of LABS can be written in the following
way

Si = sign (Hi) (4)

where Hi =
∑

b∈N(i)

Ub→i

and Ua→i = − sign (S jSlSk). (5)

In this notation, Ua→i acts as the local opinion of the interaction
a on which direction should the variable Si be pointing to,
while Si = sign (Hi) ensures that each variable points to the
direction suggested by the majority of its factor nodes. A
local minimum is the situation in which every spin points in
the direction of its total field. Configurations satisfying such
condition can not minimize its energy with a unique spin-flip,
and therefore are called 1-spin flip stable configurations
(1-SFS).

The greedy Monte Carlo algorithm corresponds to the
sequential search for 1-SFS states by randomly modifying the
variables that are frustrated SiHi < 0, as shown in Algorithm
Require: Set of spins {S1, . . . ,SN}, and a set of interactions
{a = (Si,S j,Sk,Sl), b = (Sh, . . .), . . .}.

Ensure: Returns 1-spin flip stable configuration
~S = Random-Select({±1}N) {Take a random starting
sequence}
Compute all messages Ua→i and Hi using eq. (5)
Fset = {i|SiHi < 0}
while Fset not empty do

j = Random-Select(Fset)
S j = −S j {Flip a frustrated spin}
Compute all messages Ua→i and Hi using eq. (5) {Actually
only those affected by the flip}
Fset = {i|SiHi < 0}

end while
return ~S
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Figure 2. Density of states and density of 1-Spin flip stable configurations for
the LABS problem with N = 25. Both results obtained from an exhaustive
enumeration of all the 225 configurations.

It is easy to show that at every iteration, the total energy of
the system is reduced. Since such energy is bounded by below
greedy Monte Carlo has the following properties

1. the algorithm stops after a finite number of steps

2. the state found is a 1-SFS configuration, meaning that
the total energy of the system can not be lowered by a
single spin change.

Of course, the binary sequence with the lowest autocorrelation
is one of such 1-SFS states, since it is the absolute energy
minimum. However, there are (exponentially in N) many such
stable states (see Fig. 2), and Monte Carlo greedy minimization
will usually get stuck in one of them, far from the global
optimum.

II.2. Warning Propagation

Message passing algorithms, like sum-product [23], belief
propagation [16], and warning propagation [24] have been
derived more than once in different communities and for
different applications, with different balances between rigor
and intuition. A standard approach presents them as an
approximation to study the properties of the measure

P(S) =
1
Z

exp
(
−βE(S)

)
. (6)

In the limit of low temperatures (β = 1/T → ∞) the measure
concentrates on the configurations of lowest energy, and
therefore good approximations can be transformed into good
optimization procedures. Warning propagation corresponds
to the zero temperature limit of the Bethe approximation
in statistical mechanics. Said in other terms, the max-sum
algorithm corresponds to the zero termperature limit of the
sum-product one (standard belief propagation).

WP is implemented in terms of two types of messages: Ua→i
carrying information from interaction node a to any of its
variables i, and the converse Hi→a sending information from

variable i to one of its interactions. It is possible to derive the
following two equations relating these messages by taking the
appropriate T = 0 limit in the belief propagation equations

Ua→i = − sign (H j→aHl→aHk→a)

= − sign

 ∏
j∈N(a)\i

H j→a

 (7)

Hi→a =
∑

b∈N(i)\a

Ub→i. (8)

The expresion Ua→i is expanded for the case of factor nodes
a with four variables, but it is clear from the compacted form
that in the case of two-variables factors, the equation reduces
to Ua→i = − sign (H j→a).

The WP equations are a “cavity” version of the Monte Carlo
ones (5), where the cavity term refers to the fact that self
interaction Ua→i is removed from (8) in the definition of the
field Hi→a.

The Warning Propagation algorithm consists of iterating the
messages eqs. (7, 8) until convergence, as shown in algorithm:
Require: Set of interactions {a = (Si,S j,Sk,Sl), b = (Sh, . . .), . . .},

maximum number of iterations Tmax.
Ensure: Returns a fixed point of WP, or “NonConverged”.

Initialize all fields Hi→a picking uniform from {-1, 0, 1}.
while T < Tmax and NotConverged do

NotConverged = False
Order = Random-Shuffle([1:N])
for (i in Order) do

for a ∈ N(i) do
Update Ua→i y Hi→a as in eq. (7) and (8)
if Ua→i or Hi→a changed then

NotConverged =True
end if

end for
end for

end while
if T < Tmax then

Compute total fields Hi =
∑

b∈N(i) Ub→i

return ~S = (sign H1, sign H2, . . . , sign HN)
else

return “Non Converged”
end if

There is a trivial fixed point of this algorithm, where all
messages are zero, but it is highly unstable, and even a tiny
fraction of non zero messages at the beginning takes the
algorithm to other non-trivial and more informative fixed
points. In the case that the algorithm reaches convergence
(fixed point of the fields), you can recover a local energy
minimum by setting the total field to Hi =

∑
b∈N(i) Ub→i and the

spins to Si = sign Hi. We found that WP generally converge
in instances of LABS, however, it requires running times
that are orders of magnitude larger than Monte Carlo. This
disadvantage is partially compensated by a nice property:

1. fixed point solutions of warning propagation
correspond to configurations that are stable with respect
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to flipping any set of interacting variables that are singly
connected (a tree), or belong to a single loop, or to a
disjoint union of these types of sets [25].
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Figure 3. Cummulative distribution of energies for MC T=0 and WP compared
to the density of 1 Spin-flip stable configurations for LABS N = 25. WP
explores the lower energies more frequently than MC, and both explore the
very low energy sub-space of the configurations space.
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Figure 4. Top, N = 25, bottom N = 50. Cummulative probability of finding
configurations below a given energy for Greedy Monte Carlo and Warning
Propagation. In both figures Warning Propagation algorithm is shown to
outperform Greedy Monte Carlo.

This implies that all WP fixed points are also Monte Carlo
stable states, while the reverse is not true. The number of

fixed points of WP is usually also large, but being the stability
requirement more demanding, they are expected to be fewer
and concentrate at lower energies than those of T = 0 Monte
Carlo. For this reason, WP seems a good candidate to attack
the optimization in LABS.

Figures 3 and 4 show the distribution of energies for the states
given by both algorithms Greedy Monte Carlo at T = 0 and
Warning Propagation. Figure 3 points to the fact that both MC
and WP concentrate in the very low part of the full spectrum
of energies for a small system N = 25. Fig 4 zooms into the low
energies and shows the cumulative probability function of the
energies of the resulting states after 1000 runs of Monte Carlo
and WP for two system system sizes N = 25, 50. As expected,
Warning Propagation finds low energy configurations with
higher probability. However, neither of the algorithms is
particularly good at finding the global optimal configurations
at E0

25 = 36 and E0
50 = 153 respectively.

Finally, Fig. 5 shows the average behavior of both algorithms
at growing values of N. Both algorithms find typical states
(see symbols for Mean MC, Mean WP) with an energy that
is much lower than the typical energy of a LABS sequence
at random (Mean LABS), indeed far more lower than one
standard deviation of the energy spectrum. This mean that
they found rare configurations of low energy. Moreover,
Warning propagation is always better than Monte Carlo, but
at a price of larger running times. Unfortunately, the smallest
energy values known for LABS (N ≤ 66) are also far from
the typical results from MC and WP, and furthermore, even
running both algorithms 1000 times, and picking its best
converged result (Optimal MC, Optimal WP) still produce
configurations that are far from the ground states for large
values of N (see Figure 6).
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Figure 5. Lowest points are the best known sequences (either known to
be the optimal (full squares) or the best guess (open squares)). The highest
curve is the mean energy of all the configurations in LABS, and the bars mark
the standard deviation from it. Typical solutions from both LABS and MC are
well below the typical energies, but still far from the optimal ones. Circles and
triangles show the best sequences found by WP and MC in 1000 attempts.
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III. DISORDERED VERSIONS OF LABS

Already in 1994 a series of papers followed a different path
[26–28]. They approached the problem borrowing techniques
and concepts from the statistical physics of disordered
systems, and the model, since then, became a paradigm for
the existence of glassy phases in systems without disorder.
The idea then was to study a disordered version of the LABS
problem and to predict its average properties in the infinite
size limit. In short, it is possible to write equation (1) as:

Definition 1. LABS

E(S) =

N−1∑
k=1

(
∑

i, j

Jk
i, jSiS j)2 (9)

where for LABS Jk
i, j is defined as:

Jk
i, j =

{
1 j = i + k
0 otherwise . (10)

A disordered version of the model [26] may be achieved by
relaxing the spatial structure in the autocorrelations Jk

i, j:

Definition 2. Mean Field LABS

Jk
i, j =

{
1 with probability (N − k)/N2

0 otherwise (11)

this is a sort of Mean Field (MF) version of the problem that
preserves the connectivity of the variables, but diminishes the
correlations between them randomizing Jk

i, j. Studying such
a model it was possible to introduce ideas and methods
developed for spin glasses [29] and to find that the system
undergoes a first order transition with a glassy phase at low
temperatures, much as if quenched disorder was present [26].

Another model, which reminds the original LABS problem, is
the anti-ferromagnetic p-Spin model (with p = 4) defined by
the energy function:

Definition 3. 4-Spin

E(S) =
∑
i, j,k,l

Ji, j,k,lSiS jSkSl (12)

where Ji, j,k,l is a random diluted matrix with elements 0 and 1
chosen with the same number of interactions than the LABS
model.

Although the model is well understood in the diluted
and fully connected regimes [30, 31], as far as we know
it has never been compared with LABS or its mean field
version. The three models share a similar formal structure,
defined by a set of binary variables Si = ±1 interacting
antiferromagnetically in groups of four (mostly). In physics,
antiferromagnetic interactions refer to situations where the
optimal configuration for the interacting variables is when
they avoid having the same value. The arbitrariness of the
matrix Ji, j,k,l in p-Spin allows for energies E(S) (eq. (12)) with
negative values, while in the Mean field and LABS cases (eq.
9), the square guarantees that energies remain positive. The
LABS is the most ordered instance of these three models since
the groups of interacting variables are not only correlated by
the square but also by some spatial structure j = i + k in (10).
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The greedy Monte Carlo and Warning Propagation algorithm
are readily applied to this modified models. An exhaustive
enumeration of energies in the configuration space of N = 25
models in Fig. 7 exhibit some regularities among the three
versions, being LABS and its Mean Field version the most
similar. The p-Spin have a richer high energies structure. In
all three cases, 1-SFS configurations concentrate in the lower
energies range of the spectrum.
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Monte Carlo at T=0 locates 1-SFS states and also (as it did in
LABS Fig. 2) samples the lower energies 1-SFS more frequent
than the higher ones (see Fig. 8). The behavior of WP and
Monte Carlo mark a difference between p-Spin and Mean
Field. It seems that the low energy states of p-Spin are more
easily accessible by both algorithms than in the Mean Field
or LABS cases. This difference suggest that the randomness
of p-Spin is somehow simplifying the energy landscape. A
supposition that is further supported by the running times of
WP in each model, as shown in figure 9, where the number of
iterations required to converge in LABS and Mean Field grew
exponentially with roughly the same rate, while in p-Spin
the growing was with a lower rate, consistent with a simpler
energy landscape.

IV. CONCLUSIONS

We have applied two methods (T = 0 Monte Carlo and
Warning Propagation) to LABS problem. Both methods
concentrate in the low energy part of the spectrum of LABS.
While Greedy T = 0 Monte Carlo converges always (and fast)
to 1-SFS solutions, WP generally converges but takes running
times that are much larger. On the positive side, WP explore
states that are lower in energy than the 1-SFS states of the
greedy Monte Carlo.

Unfortunately, both algorithms stuck in a large number of
suboptimal fixed points at low energies. Therefore, the lowest
autocorrelated sequence remains hard to find for both of them.
At the present stage, we only tried to find it by running each
algorithm many times from random initial conditions.

We conclude that these two general methods, although
simpler, are less powerful than the state of the art optimization
techiniques for LABS as those in [1], and fail to give good
estimates of the lowest energies for large systems.

To shed some light on this direction we also tried warning
propagation on two disordered versions of the LABS problem.
While a mean field version of LABS have similar properties
to LABS, the p-Spin version seems to be notably easier. This
suggest that statistical physics results from p-Spin might not
be readily translated to LABS.

Improving over the present work could follow two standard
paths in the physics of disordered systems. The first is the
use of Survey Propagation algorithm [32] that improves over
WP by considering the multiplicity of solutions of WP fixed
points. The other would be the inclusion of larger regions in
the approximation of the free energy, as is done by Cluster
Variational Methods [22, 33, 34], which in this case might be
relevant since the basic interactions of the model is between
groups of 4 variables. We are currently exploring both.
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