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The model J1-J2 has provided a good theoretical benchmark for
the study of frustrated magnets. This model is studied from the
perspective of the Cluster Variation Method (CVM). In a first
moment, Bethe approximation is considered. In this context it
is possible to obtain a phase diagram where a stripes phase
and a paramagnetic phase are observed, though separated by
a non convergence zone. Secondly, plaquette approximation is
considered and a complete phase diagram is obtained. In the latter
it is observed an additional nematic phase with orientational but not
positional order, which was not possible to observe using the Bethe
approximation.

El modelo J1-J2 ha servido como base para el estudio teórico de
materiales magnéticos frustrados. Este modelo es estudiado desde
la perspectiva del Método de Variación de Clusters (CVM). En un
primer momento se estudia utilizando la aproximación de Bethe.
En este contexto se obtiene un diagrama de fases en el que es
posible observar una fase de franjas y una fase paramagnética,
separadas por una zona de no convergencia. Posteriormente se
emplea la aproximación de plaquetas, lo cual permite obtener un
diagrama de fases completo. En este último es posible observar
la fase nemática, que no se observa al utilizar la aproximación de
Bethe.

PACS: Phase Transitions: general studies (transiciones de fase: estudios generales), 05.70.Fh; Classical spin models (modelos clásicos
de spin), 75.10.Hk; Spin arrangements in magnetically ordered materials (estructuras de spin en materiales magnéticamente ordenados),
75.25.+z

I. INTRODUCTION

Competing interactions are a common feature of many
natural and artificial systems. Examples can be found in
very different scenarios like solid state physics, mathematical
optimization or quantum systems. In particular, ultra-thin
magnetic films [2,3], spin glasses [4], high Tc superconductors
[5–9], colloidal suspensions [10], and strongly correlated
electron systems [11, 12], are some of the many examples
where competing interactions are present. An interesting
aspect when dealing with competing interactions is the
arising of frustration, that is the inability of the system to
satisfy all the interactions at the same time. High frustration
gives place to very interesting and complex landscapes
in the equilibrium (stripes, bubbles, clusters, spin liquid,
disordered phases, etc). Also, to the occurrence of very
complex phenomena such as slow relaxation to equilibrium
and strong metastability [1].

One of the simplest models with competing interactions
is the well known J1-J2 model. In a square lattice
it is a simple extension of the Ising Model where,
besides of the nearest neighbor (NN) ferromagnetic
interaction characterized by the coupling factor J1, one
adds an antiferromagnetic interaction between next nearest
neighbors (NNN) characterized by the parameter J2.

The Hamiltonian describing the model is

H = −
∑
〈i j〉

J1sis j −
∑
〈〈i j〉〉

J2sis j −
∑

i

hisi, (1)

where
〈
i j
〉

stands for the NN and
〈〈

i j
〉〉

for the NNN.

This model has served as a paradigm for the study of
frustrated magnets and a renewed attention has been put
into it during the last decades [13–20]. The interest on the
model is motivated by many factors.

In the very first place it is a simple model with a rich
phase diagram [14, 20–22]. Depending on the adjustable
parameter k = |J2/J1| and the relative signs of the exchange
interaction parameters, it offers the chance to describe Néel
antiferromagnetic order (NAF), columnar antiferromagnetic
order (CAF),or spin liquid and nematic phases.

It is precisely the evidence of the presence of the spin liquid
phase [20, 21, 23], one of the reasons for the renaissance of
the interest in the model. It is a fact that it provides a good
opportunity to understand the spin liquid properties or even
to obtain a realization of this type of order that conserves its
properties near the absolute zero.

Besides, it is relevant for the understanding of high
Tc superconductivity of cuprates and iron based
superconductors such as LaFeAsO, that have shown
superconductivity at temperatures up to 50 K [7–9, 24].

The recent experimental realization of “J1-J2 materials”,
such as VOMoO4 [25], Pb2VO (PO4)2 [21], Li2VOSiO4 and
Li2VOGeO4 [26, 27], has open the gate for the necessity of
a deep theoretical understanding of the model in order to
compare with experimental results and make predictions.

Most of the theoretical work on the model has been
devoted to the zero external field scenario [28–33], where
a good understanding of the equilibrium properties has been
reached already. In the case of the Ising J1-J2 in the zero field
case for k > 1/2 a stripes phase of alternating up and down
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spins is the ground state at low temperatures. The stripes
phase is characterized by the presence of both orientational
and positional order in the lattice.

On the other hand, nematic phases related to the stripe-like
order are present in many quasi two dimensional systems
like ultra-thin magnetic films and electronic liquids [34–38].
These nematic phases are characterized by the presence of
orientational, but no positional order. In this sense there is an
intermediate degree of symmetry between the disorder phase
and the stripes (See Fig. 1 for an intuitive comprehension).

Figure 1. Schematic representation of order in the equilibrium state of
the model. From left to right, paramagnetic (under homogeneous field),
nematic and stripes order. Arrows stand for the mean local magnetization
and lines for site to site correlations. Left Paramagnetic: All sites are equally
tagged. There is no order at all, but a high symmetry. Center Nematic:
Magnetizations are the same. However the correlation between horizontal
neighbors is different from the correlation between vertical neighbors. There
is orientational order characterized by non isotropic correlations. Right
Ferromagnetic: Magnetization in the middle column point in an opposite
direction to that of the rest of the sites. Correlations are just as in the nematic
phase, so there is nor positional neither orientational order in the stripes
phase.

A natural question arises: whether J1-J2 model would be able
or not, to sustain such a nematic phase, as an intermediate
phase in the breaking of the Z4 symmetry of the disordered
phase to the Z2 symmetry of the stripes. The difficulty on the
study of such anisotropic phases arises from the necessity of
computing correlations in different directions.

In [22], Stariolo et al. answered the previous question by
constructing an H-T phase diagram of the model. In this
phase diagram it can be observed a region where nematic
order arises. The phase diagram was built by using the well
known Cluster Variational Method (CVM) approximation,
which showed to be very appropriate for the study of
anisotropic correlations. These authors point out that it is
necessary to go beyond naive mean field (MF) and Bethe, in
order to compute anisotropy in correlations. They asseverate
that the minimal approximation suitable for detecting the
stripes phase is the plaquette or Kikuchi approximation.

In the present paper we show that it is possible to observe
the stripes phase in the context of the Bethe approximation,
provided the regions and the symmetries of the problem
are considered in a proper way. We will show the phase
diagram of the problem, using both Bethe and the Kikuchi
approximation, the latter resulting similar to the one reported
in [22].

In order to differentiate the phases to which the model
converges in equilibrium, two order parameters are used,

one measuring the positional order and one measuring
the orientational order. The orientational order parameter
defined as

Q =
1
4

(l34 + l12 − l23 − l14) , (2)

and the positional order parameter as

M =
1
2

(m1 −m4) , (3)

where li j = 〈sis j〉 stands for the correlation between spins
j and i, and mi for the local magnetization at site i. The
numeration follows Fig. 2

2 3

1 4

Figure 2. Sketch of the typical structure considered to compute the order
parameters.

When the system is in the stripes phase both the order
parameters are finite. The transition to disorder, where they
are both zero, can occur in two ways. There can be a slow
transition, characterized by a nematic intermediate order, or
a discontinuous transition when both abruptly go to zero.
Orientational order parameter plays the leading role when
nematic order is present, and in fact, after leaving the stripes
phase, there is no need to follow the behavior of the positional
order.

As the largest correlations to be considered in order
to compute these order parameters are links, it seems
appropriate to consider at first instance the Bethe
Approximation. This approximation considers links as
largest regions in the Region Based Free Energy [39]. This
will gives us the opportunity to consider different kind of
interactions, which is not possible using Mean Field. In a
second moment we consider the Kikuchy approximation
which consider four site plaquettes as largest regions. This
allows to take into account correlations among all four spins
in the basic cell of the lattice, which improves the quality of
the results.

II. BETHE APPROXIMATION

We study the equilibrium of the model using the CVM
formalism [39]. The simplest approximation in this context is
the Bethe-Peierls one, in which the largest regions considered
in the variational free energy to minimize are links. It has
been widely established that the constrained minimization
of the Bethe free energy leads to a set of self-consistent
equations in the Lagrange multipliers. Carefully treated,
these equations result to map into the standard Belief
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Propagation Algorithm (BP) equations [39]. In BP, Lagrange
multipliers are understood as messages from links to sites.
This algorithm is known to be exact in tree like graphs,
and even when in structures with loops it does not give the
exact results, it provides a simple and good insight into the
equilibrium properties of a system.

The self-consistent equations for the messages have the form
[39]

m j→i (si) = ki

∑
s j

f
(
si, s j

) ∏
k∈N( j)\i

mk→ j

(
s j

)
, (4)

where the message m j→i (si) can be thought as the probability,
as seen by the spin j that spin i has value si. The form of the
functions f

(
si, s j

)
depends on whether spins i and j are NN

or NNN. For NN it has the form

f
(
si, s j

)
= exp

[
β
(
J1sis j + h js j

)]
, (5)

and for NNN

f
(
si, s j

)
= exp

[
β
(
J2sis j + h js j

)]
. (6)

It is usual to parametrize the messages as functions of cavity
fields [40]

m j→i (si) = exp
[
βu j→isi

]
, (7)

where u j→i has the form of a cavity field representing the
influence of spin j over spin i.

It is useful to do so both because it improves the efficiency of
the implementation and because it provides a very intuitive
way to understand the messages.

The algorithm consists in solving the set of self-consistent
equations by the fixed point iteration of the equations over
the full lattice considering random initial values for the cavity
fields. At every step new values are computed for the fields
by taking the previous step ones, by means of the equation

u j→i =
1
β

tanh−1

tanh
(
βJi j

)
tanh

β ∑
kεN( j)\i

uk→ j


 , (8)

which is derived from equation 4.

All the important information of the system is finally
obtained from the beliefs of each region. They represent the
marginal distributions obtained for each region in the CVM
framework. These beliefs approximate the exact Boltzmann
marginals. If we moved in the CVM context to consider
incrementally size regions the beliefs values should converge
to that of the exact Boltzmann marginals.

Beliefs can be obtained in terms of the effective fields as

bi j

(
si, s j

)
=

f
(
si, s j

)
Zi j

exp

 ∑
kεN(i)\ j

uk→isi +
∑

kεN( j)\i
uk→ js j

 (9)

bi (si) =
1
Zi

exp

hisi +
∑

kεN( j)
u j→isi

 (10)

At the time of the implementation it is possible to take
advantage from the symmetry of the interactions. Supposing
the whole lattice to be a repetition of a basic structure in
the equilibrium, we can study the whole system by just
considering some important links. In a way it is like removing
the rest of the lattice without removing its influence. The
important links are shown in Fig. 3. Not all the effective fields
are represented there and the reason is that we make some
considerations based on the symmetry of the interactions. In
Fig. 3 a distinction is made between the sites of different
columns. There are two reasons for this. The first one is
that NN interactions are all defined by the same exchange
parameter J1 and the same for NNN interactions (J2). Based
on this, we are aware that the symmetry of the order phase
should somehow be related to this fact. The form in which
the order appears depends on the relation between J1 and J2.
If J1 < J2/2, J2 domains, otherwise J1 does. The later is the case
we are considering, so it is obvious to expect the symmetry
of the stripes phase previously described. Considering this,
we can reduce the amount of degrees of freedom (d.o.f ) of the
system to six effective fields, that are the ones in Fig. 3. So, the
implementation we make is not the standard BP algorithm
for lattices, but actually a fixed point calculation on the set of
BP self-consistent equations for these six degrees of freedom.

Figure 3. Representation of the relevant links in Bethe approximation.

In order to make it clear, for example, let’s look at a horizontal
link, it is the one between the sites represented black and
white. The fields that enter into the update equations of the
cavity fields between the two sites are represented in Fig.
4. The ones acting on the black spin enters into the update
equation for the cavity field from the black site to the white
one, and vice versa.

Figure 4. Fields that enter into the update equation for the effective fields in
the link.

As a result of the Fixed Point study on this system it was
possible to obtain an approximate phase diagram for the
model (Fig. 5).
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There are some important points to discuss about the
phase diagram. First, it was possible to observe the stripes
phase for low external magnetic fields and temperatures,
which is in agreement with the results reported in [22]. On
the other hand, the presence in this phase of anisotropic
correlations seems to contradict their statement that the
minimal approximation in which such a behavior could be
observed is the Kikuchy one. The fact is that it is true only
if you do not include in the Bethe region graphs the NNN
links. So what we did was to include the diagonal links in
the set of regions and consider the messages between NNN
in the BP formulation.

Figure 5. Phase diagram for J1-J2 model in the context of the Bethe
Approximation.

For high temperatures and fields, it is predicted the existence
of a paramagnetic phase, where nor orientational neither
positional order are observed, and the average magnetization
is only due to the presence of an external field.

On the other hand, a region of the diagram could not be
described, as the algorithm did not converge. The reason
why nematic phase could not be observed within this
approximation is not completely clear to us, neither the
reason of the non convergence. However, we will see below
that it could be well connected with the appearence of the
nematic phase.

Still, we want to emphasize that even when a complete
characterization of the phase diagram is not possible at the
Bethe level it proved again to be a useful tool in a fast
exploration of the model.

III. PLAQUETTE APPROXIMATION

In order to obtain a more complete and accurate phase
diagram for the model we go a step further in the CVM
formalism and consider Kikuchi approximation. In this
framework the largest regions to be taken into account
in the construction of the variational free energy are the
plaquettes of four sites. It is widely established that the
constrained minimization of the Kikuchi free energy leads
to a set of equations that are equivalent to those of the
algorithm Generalized Belief Propagation [39]. In the Parent to
Child formulation of the algorithm, messages go from parent

regions to children only, that is, from plaquettes to links, and
from links to sites.

The objective is again to determine the marginal distributions
for each region, which in this context are called beliefs.
These beliefs are obtained from the equilibrium values of
the messages by [40]

bR (sR)α
∏
a∈AR

fa (sa)

 ∏
P∈P(R)

mP→R (sR)

∏
D∈D(R)

∏
P′∈P(D)\ε(R)

mP′→D (sD) ,
(11)

where fa (sa) has a similar meaning to that of f
(
si, s j

)
,with

the difference that for plaquettes, the expression includes all
the pair interactions between the sites that conform it; P (R)
stands for the parent regions of region R;D (R) for the regions
descending from R; and ε (R) represents the set formed by R
and its descendants.

It is important to notice that at the time of constructing the
region based free energy, links between NNN sites are not
included as they have counting number zero, which is logical
if we realize that they are not part of any intersection of larger
regions.

Again it is appropriate to parametrize the messages in terms
of cavity fields [40]. The messages from links to spin have the
form stated in (7). On the other side, the parametrization of
plaquette to link messages is more subtle. This is

MP→L
(
si, s j

)
= exp

[
β (UP→L) sis j + uP→isi + uP→ js j

]
, (12)

where UP→L has the form of an effective interaction term like
Ji j and the other terms have a similar meaning to that of the
cavity fields that parametrize link to spin messages.

Some symmetry considerations were made before the
implementation. In the first place, as it can be predicted from
the results in the Bethe context, and as it is known from [22],
the higher possible degree of order for the model is that of
the stripes phase. Based on that, it is possible to impose some
constrains over the values of the messages. This idea is shown
in Fig. 6 where we show that some messages are taken to be
the same, in the way it should be in the stripes phase. In
this figure messages from the plaquette P to its children are
not represented, but they are to be considered equivalent to
the ones coming from neighbor plaquettes. Notice that doing
this represents a great simplification of the computational
requirements as we reduce the problem to a set of eleven
selfconsistent equations.

We consider a characteristic plaquette to reproduce the
behavior of the entire lattice, considering the effect of the
rest of the system through the messages or in our case the
cavity fields from nearby regions (Fig. 6). In this way our
computation translates into a Fixed Point calculation on the
set of GBP self-consistent equations for the fields remaining
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in the structure.

Figure 6. Structure over which the algorithm is run and the constrains over
the messages.

Following the ideas outlined in [40], we can remove
the gauge invariance in the cavity field equations. The
standard parent-to-child implementation of the GBP method
introduces more parameters than actually needed [40, 41] to
characterize the local beliefs distributions. The redundant
parameters do not alter the fixed point solution, but could
affect the convergence of the fixed point algorithm. So, based
on the recommendation in the previous reference, we set two
of the field variables to be zero. In Fig. 7 we omit the fields
that we force to be zero.

Figure 7. Structure over which the Fixed Point calculation is done, and
constrains over the fields. The ones forced to be zero are omitted in this
sketch.

On the other hand, there is a set of fields which enter into the
update equation of each other partly linearly, which usually
slows down the convergence. It can be avoided by solving the
linear system they form, in function of the non linear parts
of the update equations. Doing this drastically improves the
convergence of the algorithm.

In this context it was obtained a complete phase diagram
(Fig. 8), similar to that in [22].

Figure 8. Phase Diagram using GBP.

Figure 9. Order parameters as a function of h for T = 0.05. A discontinuous
transition is observed for both of the parameters. So, the transition from
stripes to paramagnetic phase is direct.

Figure 10. Order parameters as a function of h for T = 0.8. It can be
observed a first transition in which positional order goes to zero while there
is still orientational order. This is the signature of the nematic phase. A
second transition occurs in which orientational order goes continuously to
zero, so that paramagnetic phase is reached. At this temperature, transition
from order phase (that is, from stripes), to disorder, occurs by passing
through an intermediate nematic type order, rather than directly as at
T = 0.05.

It is important to notice that at very low temperatures the
transition from the stripes ordered phase to the paramagnetic
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one seems to occur directly without passing through the
nematic order, which is the main difference with the results
published in [22]. In order to make it clear we show the
behavior of the order parameters as a function of the external
field for T = 0.05 (Fig. 9).

On the other hand we can look at the behavior of these
parameters for T = 0.8, where the nematic phase is clearly
observed (Fig. 10).

IV. CONCLUSIONS

In this work we studied the J1-J2 using the Cluster Variational
Method. By considering the proper symmetries of the
model, it was possible for the first time in the literature, to
describe the presence of stripes in the Bethe approximation.
Unfortunately the Bethe approximation does not converge
for all the parameters of the model.

We improved over Bethe by studying also the model in the
plaquette or Kikuchi approximation. In this case, the full
phase diagram is accessible without convergence issues, and
in addition to the stripes and the paramagnetic phases, we
show the existence of a nematic phase. Our results are mostly
consistent to the ones in [22]. However the phase diagram
in [22] was computed through a numerical minimization of
the Kikuchi free energy, while our results come from the
exact solution of the fixed point equations obtained after the
analytical minimization of an equivalent free energy. Both
methods have advantages and disadvantages of their own,
but certainly fixed point equations usually provides faster
convergence (if they converge).

We are able to show a finer description of the low temperature
extreme of the transition curves. In [22] it is suggested that
the nematic phase is stable for any T > 0. Our results, on the
contrary, point to the presence of a minimum Tc(hc) ' 0.2.
Below this temperature the nematic phase does not exist and
the transition occurs directly between the paramagnetic to
the stripe phase.
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[31] J.L. Morán-López, F. Aguilera-Granja and J.M. Sanchez,
Phys. Rev. B 48, 3519, (1993).

[32] J.L. Moran-Lopez, F. Aguilera-Granja and J.M. Sanchez,
J. Phys.: Condens. Matter 6(45), 9759, (1994).

[33] R.A. dos Anjos, J.R. Viana and J.R. de Sousa, Phys. Lett.
A 372(8), 1180, (2008).

[34] D.G. Barci, A. Mendoza-Coto and D.A. Stariolo, Phys.
Rev. E 88, 062140, (2013).

[35] S.A. Cannas, M.F. Michelon, D.A. Stariolo and F.A.
Tamarit, Phys. Rev. B 73, 184425, (2006).

[36] N.G. Almarza, J. Pekalski and A. Ciach, J. Chem. Phys.
140(16), 164708, (2014).

[37] L. Nicolao and D.A. Stariolo, Phys. Rev. B 76, 054453,
(2007).

[38] Ar. Abanov, V. Kalatsky, V.L. Pokrovsky and W.M.
Saslow, Phys. Rev. B 51, 1023, (1995).
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