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Earthquake catalogs typically report multiple magnitude types, which
makes it difficult to perform comprehensive statistical analysis.
Internationally, moment magnitude is the preferred reference
scale for unification. This study establishes empirical relationships
between My and two magnitudes used in Cuba: (1) amplitude-based
M, and (2) coda-duration-based Mc, as computed by the National
Seismological Service of Cuba for earthquakes recorded from
1998-2022.

We evaluated linear and nonlinear regression models, including
those accounting for uncertainties in the independent variable (M. or
Mc). Model parameters were estimated via standard least squares,
orthogonal distance least squares, and higher-order moments
regression. Using the Akaike (AIC) and Schwarz (BIC) information
criteria, we identified the segmented model using orthogonal
distance regression (ODR) as most recommended for both My—M_
and Mw—Mc¢ relationships. These results provide a robust basis
for magnitude conversions in Cuban catalog homogenization and
seismicity analysis.

Los catélogos de terremotos reportan mdltiples tipos de magnitud,
lo que requiere una magnitud unificada para analisis estadisticos. La
magnitud momento (My) es la escala preferida para la unificacion.
Establecimos relaciones empiricas entre My y dos magnitudes
utilizadas en Cuba: M basada en amplitud de onda y M¢ basada en
duracion de coda, calculadas por el Servicio Sismologico Nacional
de Cuba entre 1998 y 2022.

Evaluamos modelos de regresién lineal y no lineal, incluyendo
aquellos que consideran la incertidumbre en la variable
independiente (M. 0 Mc). Estimamos los parametros de los modelos
mediante minimos cuadrados estandar, minimos cuadrados
ortogonales y regresion por momentos de orden superior. Mediante
los criterios de informaciéon de Akaike (AIC) y Schwarz (BIC),
identificamos que el modelo de regresion segmentada por distancia
ortogonal es el mas recomendable para las relaciones My-M, y
Mw-Mc. Estos resultados permiten homogenizar catalogos sismicos
cubanos y mejorar los estudios de sismicidad.

Keywords: Earthquakes in Cuba (Terremotos en Cuba), Earthquake magnitudes (Magnitudes de terremoto), Errors in physics (Errores en

fisica), Seismicity (Sismicidad), Statistics (Estadistica).

I. INTRODUCTION

The primary information contained in earthquake catalogs
includes the location and magnitude of seismic events.
The most common representation of earthquake size is the
magnitude. Typically, catalogs report two or more types of
magnitude measurements. The Cuban National Seismological
Service (SSN) employs mainly the following magnitude
scales: M (based on wave amplitude), Mc (based on coda
duration) and My (based on seismic moment).

For statistical analyses of catalog data, such as studies of
the coverage areas of seismological networks, seismicity,
or hazard assessment, magnitude unification is applied to
incorporate the largest possible number of observations. This
process involves homogenization of all events to a single
magnitude scale.

The moment magnitude My is considered the most
representative of the tectonic effects of an earthquake and
remains valid across the entire magnitude range [1]. Unlike
other magnitudes, My does not saturate at high values, which
has led to its adoption as the international reference for
magnitude unification. In cases where My is unavailable, it
can be estimated from other available magnitude types using
regression-based formulas.
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Magnitude conversion is a common practice worldwide
[2-6]. Although several studies have examined relationships
between earthquakes magnitudes in Cuba [7-9], the
relationships between My and M; or Mc have not yet
been thoroughly investigated. This study aims to establish
empirical relationships between My and these magnitudes,
providing essential tools for catalog homogenization and
seismicity analysis within the country.

II. MATERIALS AND METHODS

We utilized the instrumental earthquake catalog from the
SSN covering the period 1998-2022, within the region
bounded by the coordinates 73.00°-84.00° W longitude and
19.00°-24.00° N latitude. The catalog was refined using
the ECP package [10], which involved removing duplicates
and correcting errors through cross-validation of parameters
within an acceptable range. This process yielded 14,858 pairs
of observations (Mw, M) with My, in the range [-1.9, 6.6], and
14,328 pairs (Mw, Mc) with Mc in [-0.4, 6.2].

While the linear model has been extensively employed for
converting between different earthquake magnitude types
[11], a variety of other models have also been applied in
this context. These include bilinear [5, 12-17], polynomial

ARTICULOS ORIGINALES (Ed. E. Altshuler)


https://orcid.org/0009-0005-1400-8083
https://orcid.org/0000-0002-7661-7539

[18-22], and exponential models [12, 23-26]. Furthermore,
more complex modeling approaches have been investigated
[5, 24, 27,28]. It is important to note that while not all
cited studies exclusively focus on relationships between
moment magnitude (Mw) and local or coda magnitudes (My/
Mc), these alternative models are also applicable for such
conversions.

Consequently, to explore these relationships, the following
models were considered:

Linear: My = a + bM @

Segmented (bilinear): My = a + bM + cmax(M — d, 0) 2)
Polynomial2: My = a + bM + cM? 3)
Polynomial3: My = a + bM + cM? + dM® 4)
Exponentiall: My = ae™ (5)
Exponential2: My = ae™ + ¢ (6)

Where M can be either My, or Mc.

Table 1 summarizes the types of regression employed, their
objectives, and the conditions under which they are applied.

Table 1. Types of Regression.

Type Objective Assumption
Minimize the r(?sgr?: f)i{e in
Standard sum of squared Ec)he depen d}:ent
vertical residuals p
variable
Minimize the Errors exist
Orthogonal sum of squared de ;ﬁggrilan d
distance ! orthogonal b
residuals independent
variables
Match theoretical r(?sgr?: ?nalr)eo th
Higher-order moments with ge endent and
moments 3 observed data P
moments independent
variables

In the case of linear regression via the method of moments, six
different slope parameter estimators can be used [30]. When
there is available information concerning error variances,
estimators S to 4 should be used. Otherwise, if not a priori
information exists, 85 or f3s shall be used. Here we applied the
estimator f3s, as follows [30]:

SXW

ps = )

Sxxy
Where S,,, and S, are the third-order cross-moments
(coskewness) for independent and dependent variables x
and y. In order to use fs, the third sample moment must
significantly differ from zero (indicating non-normality) and
the sample size must be at less 50 [30]. Both conditions were
satisfied: the sample size was large, and the data did not
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follow a normal distribution (p < 0.001 in D’Agostino and
Shapiro-Francia tests).

To distinguish between linear models (1) fitted using the
method of moments and those fitted using ODS, we called
the first model Moments and the second Deming. At the same
time, we retained the designation Linear in the case of the
standard regression method.

When selecting the optimal model, we relied on information
criteria such as AIC [31] and BIC [32]:

AIC = =2In (L (O|data, model)) + 2K
BIC = =21In (L (B|data, model)) + Klnn

(8)
©)

Where L (O|data, model) is the likelihood function of the
parameters O for the observed data and assumed model, K
is the number of estimated parameters 0, and 7 is the sample
size.

As can be seen, both AIC (8) and BIC (9) are based on the
likelihood of the model, which quantifies how well the model
explains the observed data; bigger likelihood means that the
given model is more plausible [33]. In practice, it is convenient
to work with the natural logarithm of the likelihood function,
and the term In (L (6|data, model)) in the formulas refers to its
maximum value.

These criteria balance model fit with complexity. The first term
in both AIC and BIC rewards how well the model explains
the data, while the second term penalizes model complexity
to guard against overfitting. This penalty increases with the
number of estimated parameters (K) [34]. The BIC imposes
a stricter penalty than the AIC, as its penalty term also
incorporates the sample size n. Accordingly, for both criteria,
a lower value indicates a better model.

For regressions using the least squares method, as used in this
study, these measures can be calculated using the formulas
presented in [34], which, keeping all terms, lead to:

AIC = n(lna2 +ln2n+1)+2K
BIC = n(lno2 +ln2n+1)+Klnn

(10)
(11)

Where K and n are the same as before, g% is the estimated
residual variance

(12)

and ¢; represents the regression residuals. A crucial point
is that, in addition to the model’s structural coefficients,
the residual variance must also be included in the count to
determine the value of K. With this in mind, for models (1) to
(6), K takes the values: 3, 5, 4, 5, 3, and 4, respectively.
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AIC and BIC are broad metrics suitable for comparing models
of various types [35]. They do not directly evaluate the model’s
quality but rather facilitate comparison among candidate
models based on their respective values.

To facilitate this comparison, measures such as their difference
AIC, BIC or their relative weights AICy and BICyw [34,36] are
frequently applied as follows:

AAIC; = AIC; - AIC,, (13)

AIC;is AIC for model j, and AIC;, is the minimum of all AIC.
AICy, = LAIC; /Z LAIC,, (14)

Where LAIC; is the relative likelihood of the model j, given by

LAIC; = ¢"22MIC; (15)
Similarly, for BIC we have:
ABIC; = BIC; = BIC iy (16)

BIC; is BIC for model j, and BIC,,;, is the minimum of all BIC.

BICw, = LBICj/Z LBIC,, 17)
Where LBIC jis calculated as,
LBIC; = ¢"22PI (18)

Since the model with the lowest AIC or BIC value is considered
optimal, then it is assigned AIC or BIC of 0. Consequently, its
relative likelihood (15) or (18) equals 1 and its relative weight
(14) or (17) is the largest and closest to 1 within the model set.

Relative weights can be interpreted as relative preference or
the degree of empirical evidence that supports the preference
for one model over another [34,36].

For models accounting for uncertainty in all variables, the
information criteria were computed similarly, but based on
orthogonal residuals instead of vertical residuals; hereinafter
denoted as AICq, BICo, AICow and BICow.

Although the method of moments does not consider
orthogonal residuals, to compare its resulting model with
others, we calculated its AICo, BICo, AICow and BICow.

The analyses were primarily conducted using R [37], utilizing
the nls function for standard nonlinear regressions, and the
onls package [38] for orthogonal distance regression (ODR).
Visualization was facilitated with the ggplot2 package [39].
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III. RESULTS

We compute the parameters of several regression models
(linear and non-linear), relating My with M, and with Mc,
across two scenarios: 1) ignoring uncertainty in My, and Mc
and 2) considering uncertainty in My, and Mc. The selection
of the optimal model was guided by information-theoretic
criteria (AIC, BIC) and their corresponding weights (AICw,
BICw).

1.1, Mw-M; models that do not consider uncertainty in M.

For the Mw-M; relationships without uncertainty
management (figure 1) the estimated parameters are provided
in table 2.

8 Models

Exponential1
Polynomial3
Exponential2
Polynomial2
Segmented

=
= 4
2
0
0.0 2.5 5.0
M.

Figure 1. Graphs of My-M_ models that neglect uncertainty in M, .

Table 2. Parameters of the Mw-M_ relationships (without considering
uncertainty in Mp).

Model a b c d
Linear 1.287 0.605 - -
Segmented 1.328 0.552 0.292 2.330
Polynomial2 ~ 1.329 0.485 0.043 -
Polynomial3  1.333 0.515 0.010 0.007
Exponentiall  1.406 0.270 - -
Exponential2  3.438 0.143 -2.107 -

We observed that the Polynomial3 exhibits the lowest AIC
and BIC, outperforming other options due to its higher weight
(AICw =0.999, BICw = 0.991, table 3). The remaining models
have minimal weights, with the Linear and Exponentiall
models being the least aligned with the observations,
especially at higher My, values (figure 1, table 3).
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Table 3. Information criteria for Mw-M_ models without considering
uncertainty in M.

Model AIC BIC AICw BICw
Polynomial3  9979.6 10017.7 0.999 0.991
Exponential2  9996.7 10027.1 2.0x10™ 8.9x1073
Segmented 10005.4 10035.8 26x107° 12x10™
Polynomial2 ~ 10019.4 10049.8 2.4 %107 1.1x1077
Exponentiall  10513.6 10536.4 1.1x107% 22x107%®
Linear 10531.5 10554.3 1.5x10720  29x107"7

11.2.  Mw-M|, models that incorporate uncertainty in My

When including uncertainty in My, (figure 2) the estimated
parameters are adjusted (table 4) and the information criteria
(table 5) strongly favor the segmented regression model
(AICow = BICow = 0.871)', showing better behavior in the
presence of errors. The model Polynomial2 becomes the
second-best option, though with a considerably lower weight
(AICow = BICow = 0.129).

10.0
Models
- Exponential1
== Polynomial3
— Segmented
73 Exponential2
== Polynomial2
== Moments
Deming
= 50
=
2.5
0.0
0.0 2.5 5.0
M,

Figure 2. Graphs of My-M_ models that consider uncertainty in M.

The Exponentiall model and the linear models (Moments
and Deming) demonstrated the poorest fit (figure 2, table
3). . Nonetheless, the weights assigned to Exponential2 and
Polynomial2 also suggest a low likelihood of these models
being optimal.

Table 4. Parameters of the My-M__ relationships (considering uncertainty in
My).

Model a b c d
Linear 1.136 0.738 - -
Segmented 1.217 0.667 - -
Polynomial2 ~ 1.242 0.638 0.333 2.959
Polynomial3  1.245 0.593 0.025 -
Exponentiall  1.348 0.301 - -
Exponential2  7.748 0.079 -6.231 -

Table 5. Information criteria for My-M| models considering uncertainty in M.

Model AICo BICo AlICow BICow
Segmented 5249.0 5287.0 0.871 0.871
Polynomial3  5252.8 5290.8 0.129 0.129
Exponential2  5324.8 5355.3 29x1077  1.3x1071°
Polynomial2  5335.0 5365.5 1.8x107* 79x1071®
Deming 5496.4 5519.3 38x107%* 32x107%
Moments 5964.4 5987.2 3.8x1071%  7.7x1071%3
Exponentiall  6496.5 6519.3 1.1x10771  2.2x107268

H1.3.  Mw-Mc models that do not account for uncertainty in Mc

The Mw-Mc models that omit uncertainty in Mc (Figure 3)
produced the estimates shown in table 6.

Table 6. Parameters of the My-Mc relationships (without considering
uncertainty in Mg).

Model a b C d

Linear 1.287 0.605 - -
Segmented 0.243 0.802 0.442 2.940
Polynomial2  0.490 0.507 0.081 -
Polynomial3  0.310 0.783 -0.046 0.018
Exponentiall  0.817 0.398 - -
Exponential2  3.045 0.186 -2.591 -

Table 7. Information criteria for Mw-Mc models without considering
uncertainty in Mg.

Model AIC BIC AICw BICw
Segmented 9967.7 9998.0 1.00 1.00
Polynomial3  10025.6 10063.4 28%x10™8  63x107P°
Exponential2  10038.3 10068.5 48x107' 4.8x1071
Polynomial2 ~ 10052.5 10082.8 39%x107° 39x107Y
Linear 10052.5 10082.8 44x10% 1.9x107%
Exponentiall  10588.3 10611.0 1.8x1071%  7.8x10713

The segmented model minimizes the information criteria
(table 7), achieving the highest weight (AICw = BICw =
1.00), which indicates strong evidence supporting its selection.
The other models exhibit minimal relative support and are
considered highly unlikely.

I The subscript “O “indicates that the criteria were calculated from the orthogonal residuals.
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Figure 3. Graphs of My-M¢g models that neglect uncertainty in M¢.

The segmented model minimizes the information criteria
(table 7), achieving the highest weight AICyw = BICw =
1.00), which indicates strong evidence supporting its selection.
The other models exhibit minimal relative support and are
considered highly unlikely.

II1.4. Mw-Mc models that consider uncertainty in both
magnitudes.

When we incorporated uncertainty into Mc (figure 4), the
optimal settings changed.

Table 8. Parameters of the My-M¢ relationships (considering uncertainty in
both magnitudes).

Model a b c d
Moments -0.616 1.216 - -
Deming -0.224 1.031 - -
Segmented -0.126 0.979 0.266 2.799
Polynomial2  0.032 0.785 - -
Polynomial3  -0.134 1.037 -0.061 0.016
Exponentiall  -0.647 0.502 - -
Exponential2  7.611 0.106 -7.593 -
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Figure 4. Graphs of My-M¢c models that consider uncertainty in Mg.

The estimated parameters appear in table 8. The information
criteria (table 9) consistently favored the segmented
orthogonal model, which again outperformed all other
alternatives (AICow = 0.999 y BICow = 0.998).

Once more, the Exponentiall model and the linear models
(Moments and Deming) demonstrated the poorest fit (figure
4, table 9). Also, the weights associated with Exponential2
and Polynomial2 provide substantial evidence against these
models.
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Table 9. Information criteria for My -Mg models (considering uncertainty in
both magnitudes).

Model AICo BICo AICow BICow
Segmented 1108.3 1146.2 0.999 0.998
Exponential2  1129.1 1159.4 14x107%  1.4x107%
Polynomial3  1123.4 1161.3 53x10™% 53x107%
Polynomial2  1131.6 1161.9 9.0x107%  4.0x107%
Deming 1240.1 1262.8 24x107  47x107%
Moments 2240.4 2263.1 1.5x10726  29x10728
Exponentiall  2301.4 2324.1 8.7x107%0  1.6x1072¢

IV. DISCUSSION

In all cases, we observed that the pure exponential model
(Exponentiall) and the linear models (Moments and Deming)
demonstrated the poorest performance. Although the Deming
regression model overall outperformed Moments, exhibited
less statistical support at higher magnitudes. Conversely, the
exponential model with an independent term (Exponential2)
consistently yielded a better fit than the pure exponential,
while the cubic polynomial (Polynomial3) outperformed the
quadpratic polynomial (Polynomial2).

As noted by [11] the standard least squares method is
inappropriate for converting seismic magnitudes because:
both variables are affected by uncertainties (which contradicts
the assumptions underlying least squares) and the
magnitudes do not follow a Gaussian distribution.

To address these issues, [11] proposed the generalized
orthogonal regression (GOR). However, this approach
requires previous knowledge of the ratio (1) between the
standard deviations of the variables [11], information that is
almost always unavailable in seismic catalogs.

Moreover, GOR is not applicable to nonlinear models [17].

To incorporate the uncertainty in both variables we use:

= Higher-order moment regression [30] for linear models
(which does not require knowledge of 1), and

= Orthogonal distance regression (ODR) [29] for nonlinear
cases. Although infrequently applied in seismology,
ODR proves effective for nonlinear conversions [17].
We assume 17 = 1 (indicating similar errors in both
variables), which is equivalent to Deming regression in
linear contexts.

For both magnitude types (ML and Mc), segmented
orthogonal distance regression was found to be optimal when
accounting for uncertainties. Our preferred models (with
standard errors) are:
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My = (1.242 + 0.005) + (0.638 = 0.004)M;

+ (0.333 £ 0.025) max[M|, — (2.959 + 0.063), 0] (19)
Range: (-1.9 < M; <6.6).
My = (0.126 + 0.014) + (0.979 = 0.007)M¢

+ (0.266 + 0.022) max[M¢ — (2.799 + 0.047), 0] (20)

Range: (-0.4 < Mc <£6.2).
Our findings align with previous research when a wide range
of magnitudes was used:

s For small earthquakes (My, < 3), Mw exhibits a direct
proportionality to 2/3 My, [16,40].

» Both models present a change in slope (d) near M =
3 (296 for My and 2.80 for Mc). Bilinear Myw-Mc
relationships with a break point (e.g. Mc = 2.7) have
also been documented [13].

IV.1. Limitations and Recommendations.

Nonlinear techniques (particularly ODR) demand more
computational resources than linear approaches; however,
their application is justified by their enhanced precision. A
significant limitation is the absence of standard deviations in
the catalog, which reduces the accuracy of methods such as
ODR and GOR. We suggest incorporating these uncertainties
in future catalog updates.

V. CONCLUSION

The segmented model identified through orthogonal distance
regression is the most suitable for the Mw-Mp, and Mw-Mc

empirical relationships in Cuba, validated using information
criteria (AIC and BIC).

This study provides the first nonlinear empirical relationships
between magnitudes specific to Cuba, accounting for
uncertainties in both dependent and independent variables.

These results provide a solid basis for magnitude conversions,
catalog homogenization, and seismicity analysis within the
region.
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