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Earthquake catalogs typically report multiple magnitude types, which
makes it difficult to perform comprehensive statistical analysis.
Internationally, moment magnitude is the preferred reference
scale for unification. This study establishes empirical relationships
between MW and two magnitudes used in Cuba: (1) amplitude-based
ML and (2) coda-duration-based MC, as computed by the National
Seismological Service of Cuba for earthquakes recorded from
1998–2022.
We evaluated linear and nonlinear regression models, including
those accounting for uncertainties in the independent variable (ML or
MC). Model parameters were estimated via standard least squares,
orthogonal distance least squares, and higher-order moments
regression. Using the Akaike (AIC) and Schwarz (BIC) information
criteria, we identified the segmented model using orthogonal
distance regression (ODR) as most recommended for both MW–ML

and MW–MC relationships. These results provide a robust basis
for magnitude conversions in Cuban catalog homogenization and
seismicity analysis.

Los catálogos de terremotos reportan múltiples tipos de magnitud,
lo que requiere una magnitud unificada para análisis estadı́sticos. La
magnitud momento (MW) es la escala preferida para la unificación.
Establecimos relaciones empı́ricas entre MW y dos magnitudes
utilizadas en Cuba: ML basada en amplitud de onda y MC basada en
duración de coda, calculadas por el Servicio Sismológico Nacional
de Cuba entre 1998 y 2022.
Evaluamos modelos de regresión lineal y no lineal, incluyendo
aquellos que consideran la incertidumbre en la variable
independiente (ML o MC). Estimamos los parámetros de los modelos
mediante mı́nimos cuadrados estándar, mı́nimos cuadrados
ortogonales y regresión por momentos de orden superior. Mediante
los criterios de información de Akaike (AIC) y Schwarz (BIC),
identificamos que el modelo de regresión segmentada por distancia
ortogonal es el más recomendable para las relaciones MW-ML y
MW-MC. Estos resultados permiten homogenizar catálogos sı́smicos
cubanos y mejorar los estudios de sismicidad.

Keywords: Earthquakes in Cuba (Terremotos en Cuba), Earthquake magnitudes (Magnitudes de terremoto), Errors in physics (Errores en
fı́sica), Seismicity (Sismicidad), Statistics (Estadı́stica).

I. INTRODUCTION

The primary information contained in earthquake catalogs
includes the location and magnitude of seismic events.
The most common representation of earthquake size is the
magnitude. Typically, catalogs report two or more types of
magnitude measurements. The Cuban National Seismological
Service (SSN) employs mainly the following magnitude
scales: ML (based on wave amplitude), MC (based on coda
duration) and MW (based on seismic moment).

For statistical analyses of catalog data, such as studies of
the coverage areas of seismological networks, seismicity,
or hazard assessment, magnitude unification is applied to
incorporate the largest possible number of observations. This
process involves homogenization of all events to a single
magnitude scale.

The moment magnitude MW is considered the most
representative of the tectonic effects of an earthquake and
remains valid across the entire magnitude range [1]. Unlike
other magnitudes, MW does not saturate at high values, which
has led to its adoption as the international reference for
magnitude unification. In cases where MW is unavailable, it
can be estimated from other available magnitude types using
regression-based formulas.

Magnitude conversion is a common practice worldwide
[2–6]. Although several studies have examined relationships
between earthquakes magnitudes in Cuba [7–9], the
relationships between MW and ML or MC have not yet
been thoroughly investigated. This study aims to establish
empirical relationships between MW and these magnitudes,
providing essential tools for catalog homogenization and
seismicity analysis within the country.

II. MATERIALS AND METHODS

We utilized the instrumental earthquake catalog from the
SSN covering the period 1998–2022, within the region
bounded by the coordinates 73.00◦–84.00◦ W longitude and
19.00◦–24.00◦ N latitude. The catalog was refined using
the ECP package [10], which involved removing duplicates
and correcting errors through cross-validation of parameters
within an acceptable range. This process yielded 14,858 pairs
of observations (MW, ML) with ML in the range [-1.9, 6.6], and
14,328 pairs (MW, MC) with MC in [-0.4, 6.2].

While the linear model has been extensively employed for
converting between different earthquake magnitude types
[11], a variety of other models have also been applied in
this context. These include bilinear [5, 12–17], polynomial
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[18–22], and exponential models [12, 23–26]. Furthermore,
more complex modeling approaches have been investigated
[5, 24, 27, 28]. It is important to note that while not all
cited studies exclusively focus on relationships between
moment magnitude (MW) and local or coda magnitudes (ML/
MC), these alternative models are also applicable for such
conversions.

Consequently, to explore these relationships, the following
models were considered:

Linear: MW = a + bM (1)
Segmented (bilinear): MW = a + bM + c máx(M − d, 0) (2)

Polynomial2: MW = a + bM + cM2 (3)

Polynomial3: MW = a + bM + cM2 + dM3 (4)

Exponential1: MW = aebM (5)

Exponential2: MW = aebM + c (6)

Where M can be either ML or MC.

Table 1 summarizes the types of regression employed, their
objectives, and the conditions under which they are applied.

Table 1. Types of Regression.

Type Objective Assumption

Standard
Minimize the

sum of squared
vertical residuals

Errors are
present only in
the dependent

variable

Orthogonal
distance [29]

Minimize the
sum of squared

orthogonal
residuals

Errors exist
in both

dependent and
independent

variables

Higher-order
moments [30]

Match theoretical
moments with
observed data

moments

Errors are
present in both
dependent and

independent
variables

In the case of linear regression via the method of moments, six
different slope parameter estimators can be used [30]. When
there is available information concerning error variances,
estimators β̂1 to β̂4 should be used. Otherwise, if not a priori
information exists, β̂5 or β̂6 shall be used. Here we applied the
estimator β̂5, as follows [30]:

β̂5 =
Sxyy

Sxxy
(7)

Where Sxyy and Sxxy are the third-order cross-moments
(coskewness) for independent and dependent variables x
and y. In order to use β̂5, the third sample moment must
significantly differ from zero (indicating non-normality) and
the sample size must be at less 50 [30]. Both conditions were
satisfied: the sample size was large, and the data did not

follow a normal distribution (p < 0.001 in D’Agostino and
Shapiro-Francia tests).

To distinguish between linear models (1) fitted using the
method of moments and those fitted using ODS, we called
the first model Moments and the second Deming. At the same
time, we retained the designation Linear in the case of the
standard regression method.

When selecting the optimal model, we relied on information
criteria such as AIC [31] and BIC [32]:

AIC = −2 ln (L (θ|data, model)) + 2K (8)
BIC = −2 ln (L (θ|data, model)) + K ln n (9)

Where L (θ|data, model) is the likelihood function of the
parameters θ for the observed data and assumed model, K
is the number of estimated parameters θ, and n is the sample
size.

As can be seen, both AIC (8) and BIC (9) are based on the
likelihood of the model, which quantifies how well the model
explains the observed data; bigger likelihood means that the
given model is more plausible [33]. In practice, it is convenient
to work with the natural logarithm of the likelihood function,
and the term ln (L (θ|data, model)) in the formulas refers to its
maximum value.

These criteria balance model fit with complexity. The first term
in both AIC and BIC rewards how well the model explains
the data, while the second term penalizes model complexity
to guard against overfitting. This penalty increases with the
number of estimated parameters (K) [34]. The BIC imposes
a stricter penalty than the AIC, as its penalty term also
incorporates the sample size n. Accordingly, for both criteria,
a lower value indicates a better model.

For regressions using the least squares method, as used in this
study, these measures can be calculated using the formulas
presented in [34], which, keeping all terms, lead to:

AIC = n
(
ln σ2 + ln 2π + 1

)
+ 2K (10)

BIC = n
(
ln σ2 + ln 2π + 1

)
+ K ln n (11)

Where K and n are the same as before, σ2 is the estimated
residual variance

σ2 =
1
n

n∑
i=1

ε2
i (12)

and εi represents the regression residuals. A crucial point
is that, in addition to the model’s structural coefficients,
the residual variance must also be included in the count to
determine the value of K. With this in mind, for models (1) to
(6), K takes the values: 3, 5, 4, 5, 3, and 4, respectively.
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AIC and BIC are broad metrics suitable for comparing models
of various types [35]. They do not directly evaluate the model’s
quality but rather facilitate comparison among candidate
models based on their respective values.

To facilitate this comparison, measures such as their difference
AIC, BIC or their relative weights AICW and BICW [34,36] are
frequently applied as follows:

∆AIC j = AIC j − AICmin (13)

AIC j is AIC for model j, and AICmin is the minimum of all AIC.

AICW j = LAIC j/
∑

m

LAICm (14)

Where LAIC j is the relative likelihood of the model j, given by

LAIC j = e−
1
2∆AIC j (15)

Similarly, for BIC we have:

∆BIC j = BIC j − BICmin (16)

BIC j is BIC for model j, and BICmin is the minimum of all BIC.

BICW j = LBIC j/
∑

m

LBICm (17)

Where LBIC j is calculated as,

LBIC j = e−
1
2∆BIC j (18)

Since the model with the lowest AIC or BIC value is considered
optimal, then it is assigned AIC or BIC of 0. Consequently, its
relative likelihood (15) or (18) equals 1 and its relative weight
(14) or (17) is the largest and closest to 1 within the model set.

Relative weights can be interpreted as relative preference or
the degree of empirical evidence that supports the preference
for one model over another [34, 36].

For models accounting for uncertainty in all variables, the
information criteria were computed similarly, but based on
orthogonal residuals instead of vertical residuals; hereinafter
denoted as AICO, BICO, AICOW and BICOW.

Although the method of moments does not consider
orthogonal residuals, to compare its resulting model with
others, we calculated its AICO, BICO, AICOW and BICOW.

The analyses were primarily conducted using R [37], utilizing
the nls function for standard nonlinear regressions, and the
onls package [38] for orthogonal distance regression (ODR).
Visualization was facilitated with the ggplot2 package [39].

III. RESULTS

We compute the parameters of several regression models
(linear and non-linear), relating MW with ML and with MC,
across two scenarios: 1) ignoring uncertainty in ML and MC
and 2) considering uncertainty in ML and MC. The selection
of the optimal model was guided by information-theoretic
criteria (AIC, BIC) and their corresponding weights (AICW,
BICW).

III.1. MW-ML models that do not consider uncertainty in ML.

For the MW-ML relationships without uncertainty
management (figure 1) the estimated parameters are provided
in table 2.

Figure 1. Graphs of MW-ML models that neglect uncertainty in ML.

Table 2. Parameters of the MW-ML relationships (without considering
uncertainty in ML).

Model a b c d

Linear 1.287 0.605 – –
Segmented 1.328 0.552 0.292 2.330
Polynomial2 1.329 0.485 0.043 –
Polynomial3 1.333 0.515 0.010 0.007
Exponential1 1.406 0.270 – –
Exponential2 3.438 0.143 -2.107 –

We observed that the Polynomial3 exhibits the lowest AIC
and BIC, outperforming other options due to its higher weight
(AICw = 0.999, BICw = 0.991, table 3). The remaining models
have minimal weights, with the Linear and Exponential1
models being the least aligned with the observations,
especially at higher ML values (figure 1, table 3).
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Table 3. Information criteria for MW-ML models without considering
uncertainty in ML.

Model AIC BIC AICW BICW

Polynomial3 9979.6 10017.7 0.999 0.991

Exponential2 9996.7 10027.1 2.0 × 10−4 8.9 × 10−3

Segmented 10005.4 10035.8 2.6 × 10−6 1.2 × 10−4

Polynomial2 10019.4 10049.8 2.4 × 10−7 1.1 × 10−7

Exponential1 10513.6 10536.4 1.1 × 10−16 2.2 × 10−13

Linear 10531.5 10554.3 1.5 × 10−20 2.9 × 10−17

III.2. MW-ML models that incorporate uncertainty in ML

When including uncertainty in ML (figure 2) the estimated
parameters are adjusted (table 4) and the information criteria
(table 5) strongly favor the segmented regression model
(AICOW = BICOW = 0.871)1, showing better behavior in the
presence of errors. The model Polynomial2 becomes the
second-best option, though with a considerably lower weight
(AICOW = BICOW = 0.129).

Figure 2. Graphs of MW-ML models that consider uncertainty in ML.

The Exponential1 model and the linear models (Moments
and Deming) demonstrated the poorest fit (figure 2, table
3). . Nonetheless, the weights assigned to Exponential2 and
Polynomial2 also suggest a low likelihood of these models
being optimal.

Table 4. Parameters of the MW-ML relationships (considering uncertainty in
ML).

Model a b c d

Linear 1.136 0.738 – –
Segmented 1.217 0.667 – –
Polynomial2 1.242 0.638 0.333 2.959
Polynomial3 1.245 0.593 0.025 –
Exponential1 1.348 0.301 – –
Exponential2 7.748 0.079 -6.231 –

Table 5. Information criteria for MW-ML models considering uncertainty in ML.

Model AICO BICO AICOW BICOW

Segmented 5249.0 5287.0 0.871 0.871

Polynomial3 5252.8 5290.8 0.129 0.129

Exponential2 5324.8 5355.3 2.9 × 10−17 1.3 × 10−15

Polynomial2 5335.0 5365.5 1.8 × 10−19 7.9 × 10−18

Deming 5496.4 5519.3 3.8 × 10−54 3.2 × 10−51

Moments 5964.4 5987.2 3.8×10−156 7.7×10−153

Exponential1 6496.5 6519.3 1.1×10−271 2.2×10−268

III.3. MW-MC models that do not account for uncertainty in MC

The MW–MC models that omit uncertainty in MC (Figure 3)
produced the estimates shown in table 6.

Table 6. Parameters of the MW-MC relationships (without considering
uncertainty in MC).

Model a b c d

Linear 1.287 0.605 – –
Segmented 0.243 0.802 0.442 2.940
Polynomial2 0.490 0.507 0.081 –
Polynomial3 0.310 0.783 -0.046 0.018
Exponential1 0.817 0.398 – –
Exponential2 3.045 0.186 -2.591 –

Table 7. Information criteria for MW-MC models without considering
uncertainty in MC.

Model AIC BIC AICW BICW

Segmented 9967.7 9998.0 1.00 1.00

Polynomial3 10025.6 10063.4 2.8 × 10−13 6.3 × 10−15

Exponential2 10038.3 10068.5 4.8 × 10−16 4.8 × 10−16

Polynomial2 10052.5 10082.8 3.9 × 10−19 3.9 × 10−19

Linear 10052.5 10082.8 4.4 × 10−88 1.9 × 10−86

Exponential1 10588.3 10611.0 1.8×10−135 7.8×10−134

The segmented model minimizes the information criteria
(table 7), achieving the highest weight (AICW = BICW =
1.00), which indicates strong evidence supporting its selection.
The other models exhibit minimal relative support and are
considered highly unlikely.

1The subscript “O ”indicates that the criteria were calculated from the orthogonal residuals.
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Figure 3. Graphs of MW-MC models that neglect uncertainty in MC.

The segmented model minimizes the information criteria
(table 7), achieving the highest weight AICW = BICW =
1.00), which indicates strong evidence supporting its selection.
The other models exhibit minimal relative support and are
considered highly unlikely.

III.4. MW-MC models that consider uncertainty in both
magnitudes.

When we incorporated uncertainty into MC (figure 4), the
optimal settings changed.

Table 8. Parameters of the MW-MC relationships (considering uncertainty in
both magnitudes).

Model a b c d

Moments -0.616 1.216 – –
Deming -0.224 1.031 – –
Segmented -0.126 0.979 0.266 2.799
Polynomial2 0.032 0.785 – –
Polynomial3 -0.134 1.037 -0.061 0.016
Exponential1 -0.647 0.502 – –
Exponential2 7.611 0.106 -7.593 –

Figure 4. Graphs of MW-MC models that consider uncertainty in MC.

The estimated parameters appear in table 8. The information
criteria (table 9) consistently favored the segmented
orthogonal model, which again outperformed all other
alternatives (AICOW = 0.999 y BICOW = 0.998).

Once more, the Exponential1 model and the linear models
(Moments and Deming) demonstrated the poorest fit (figure
4, table 9). Also, the weights associated with Exponential2
and Polynomial2 provide substantial evidence against these
models.
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Table 9. Information criteria for MW-MC models (considering uncertainty in
both magnitudes).

Model AICO BICO AICOW BICOW

Segmented 1108.3 1146.2 0.999 0.998

Exponential2 1129.1 1159.4 1.4 × 10−05 1.4 × 10−03

Polynomial3 1123.4 1161.3 5.3 × 10−04 5.3 × 10−04

Polynomial2 1131.6 1161.9 9.0 × 10−06 4.0 × 10−04

Deming 1240.1 1262.8 2.4 × 10−29 4.7 × 10−26

Moments 2240.4 2263.1 1.5×10−246 2.9×10−243

Exponential1 2301.4 2324.1 8.7×10−260 1.6×10−256

IV. DISCUSSION

In all cases, we observed that the pure exponential model
(Exponential1) and the linear models (Moments and Deming)
demonstrated the poorest performance. Although the Deming
regression model overall outperformed Moments, exhibited
less statistical support at higher magnitudes. Conversely, the
exponential model with an independent term (Exponential2)
consistently yielded a better fit than the pure exponential,
while the cubic polynomial (Polynomial3) outperformed the
quadratic polynomial (Polynomial2).

As noted by [11] the standard least squares method is
inappropriate for converting seismic magnitudes because:
both variables are affected by uncertainties (which contradicts
the assumptions underlying least squares) and the
magnitudes do not follow a Gaussian distribution.

To address these issues, [11] proposed the generalized
orthogonal regression (GOR). However, this approach
requires previous knowledge of the ratio (η) between the
standard deviations of the variables [11], information that is
almost always unavailable in seismic catalogs.

Moreover, GOR is not applicable to nonlinear models [17].

To incorporate the uncertainty in both variables we use:

Higher-order moment regression [30] for linear models
(which does not require knowledge of η), and

Orthogonal distance regression (ODR) [29] for nonlinear
cases. Although infrequently applied in seismology,
ODR proves effective for nonlinear conversions [17].
We assume η = 1 (indicating similar errors in both
variables), which is equivalent to Deming regression in
linear contexts.

For both magnitude types (ML and MC), segmented
orthogonal distance regression was found to be optimal when
accounting for uncertainties. Our preferred models (with
standard errors) are:

MW = (1.242 ± 0.005) + (0.638 ± 0.004)ML

+ (0.333 ± 0.025) máx[ML − (2.959 ± 0.063), 0] (19)
Range: (−1.9 ≤ML ≤ 6.6).

MW = (0.126 ± 0.014) + (0.979 ± 0.007)MC

+ (0.266 ± 0.022) máx[MC − (2.799 ± 0.047), 0] (20)
Range: (−0.4 ≤MC ≤ 6.2).

Our findings align with previous research when a wide range
of magnitudes was used:

For small earthquakes (ML < 3), MW exhibits a direct
proportionality to 2/3 ML [16, 40].

Both models present a change in slope (d) near M ≈

3 (2.96 for ML and 2.80 for MC). Bilinear MW-MC
relationships with a break point (e.g. MC = 2.7) have
also been documented [13].

IV.1. Limitations and Recommendations.

Nonlinear techniques (particularly ODR) demand more
computational resources than linear approaches; however,
their application is justified by their enhanced precision. A
significant limitation is the absence of standard deviations in
the catalog, which reduces the accuracy of methods such as
ODR and GOR. We suggest incorporating these uncertainties
in future catalog updates.

V. CONCLUSION

The segmented model identified through orthogonal distance
regression is the most suitable for the MW-ML and MW-MC
empirical relationships in Cuba, validated using information
criteria (AIC and BIC).

This study provides the first nonlinear empirical relationships
between magnitudes specific to Cuba, accounting for
uncertainties in both dependent and independent variables.

These results provide a solid basis for magnitude conversions,
catalog homogenization, and seismicity analysis within the
region.
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