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We consider the features of the translatory motion of a rocket. It
is found that its trajectory can have an inflection point or even
contain an S-shaped section in the case of the relatively low initial
speed. Both these features are explained by the fact that initially,
the vertical component of the constant thrust is less than the gravity
force, however, due to fuel consumption, it becomes greater than
gravity. The times corresponding to the trajectory local extrema are
determined using the Lambert W-function.

Consideramos las caracterı́sticas del movimiento de traslación de un
cohete. Se ha comprobado que su trayectoria puede tener un punto
de inflexión o incluso contener una sección en forma de S en el caso
de una velocidad inicial relativamente baja. Ambas caracterı́sticas se
explican por el hecho de que inicialmente la componente vertical del
empuje constante es menor que la fuerza de gravedad, sin embargo,
debido al consumo de combustible, se vuelve mayor que la fuerza
de gravedad. Los tiempos correspondientes a los extremos locales
de la trayectoria se determinan utilizando la función W de Lambert.

PACS: General physics (physics education), 01.55.+b; Newtonian mechanics, 45.20.D-; Ballistics (projectiles; rockets), 45.40.Gj

I. INTRODUCTION

Projectile motion is one of the basic topics that are considered
in the introductory mechanics course. There are many
variations of this problem namely: drag-free projectile motion
[1]; projectile motion in the presence of both linear [2] and
quadratic drag [3], [4]; wind-influenced projectile motion [5];
projectile motion affected by the Magnus force [6]; relativistic
projectile motion [7], the added mass of a spherical projectile
[8], etc.

There are also many sources considering the examples of
variable mass motion in the presence of gravity. Mungan
and Lipscombe [9] analyze the interesting case of the vertical
launch of a grappling hook. The features of the vertical launch
of a rocket in a gravitational field are described in [10] and [11]
(p. 139).

In this paper, we consider two-dimensional motion (projectile
motion) with constant thrust and the simplest possible
approximation in which the rocket mass linearly decreases
with time. The problem is best suited for the beginning of an
upper-level undergraduate course in classical mechanics.

II. THEORY

If we consider a rocket launched at an angle to the horizon
with a constant thrust force throughout its ascent and descent
phases, it is possible to achieve a translatory motion, where
the reactive force remains in the same direction all the time.
However, it’s important to note that this scenario would
require specific conditions and considerations.

To achieve a translatory motion, the rocket’s thrust vector
must be angled appropriately relative to its velocity vector
at each point in its trajectory. By controlling the direction of
the thrust, it is possible to balance the gravitational force and

achieve a curved path that maintains a constant direction of
the reactive force.

One way to achieve this is by employing a guidance system
that adjusts the direction of the rocket’s engines to maintain
the desired trajectory. This guidance system continuously
calculates the necessary adjustments to the thrust vector based
on factors such as the rocket’s position, velocity, and desired
path. By dynamically changing the direction of the thrust, the
rocket can follow a curvilinear path while keeping the reactive
force consistently oriented in the same direction.

It is worth noting that achieving and maintaining such
a trajectory requires sophisticated control systems, precise
calculations, and real-time adjustments. Additionally, other
factors like atmospheric conditions, external forces, and the
rocket’s aerodynamic properties influence the actual trajectory
and make it challenging to achieve a perfect curvilinear
translational motion. Another practically important variant
of rocket motion is the case when the speed and thrust are
always co-directed. However, this movement model is much
more complex in terms of mathematical description.

Let us consider a body with the initial mass m0 that moves
in xy-plane under two forces: the jet force and the gravity
force. Now, we should employ the equation of variable-mass
motion (the rocket thrust equation). The reader may not be
familiar with this equation. In this regard, we can suggest
for the familiarization Ref. [11] (pp. 136-138) or Ref. [12],
where a detailed derivation and analysis of this equation are
presented (there is a small mistake in one slide of Ref. [12],
that is corrected later in the video). In our case, the equation
of variable-mass motion reads as:

m(t)
dvvv
dt
=

dm
dt

vvvrel +m(t)ggg, (1)

where vvv is the rocket velocity; vvvrel is the exit velocity of the
combustion products relative to the rocket. The first term on
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the right side of equation (1) is the thrust, while the second
one represents the gravity force.

Assuming for simplicity that the body mass decreases linearly
with time (this assumption gives us a constant thrust), we
have:

m(t) = m0 − kt ≥ 0, (2)

so that derivative dm/dt = −k = const (k > 0). Since, m(t)
should remain positive all the the time, we limit the flight
time to the interval 0 ≤ t < m0/k.

We denote the constant angle between the thrust (that is, the
rocket’s symmetry axis) and x-axis as α0 (0 ≤ α0 ≤ π/2). This
means that the rocket performs a purely translatory motion.
Although this case is not of great practical importance, the
problem is easily solvable in such a formulation. In all other
cases we deal with a set of non-linear differential equations of
motion. In addition, in reality there will be a moment of air
resistance force that will tend to rotate the rocket. This effect
is caused by the fact that the center of mass and the center of
air resistance do not coincide. To eliminate this effect, it will
be necessary to use the system of active stabilization of the
rocket flight.

The vector equation (1) splits into two independent scalar
equations:

m(t)
dvx

dt
= kvrel cosα0, (3)

m(t)
dvy

dt
= kvrel sinα0 −m(t)g. (4)

Solving equations (2)-(4) along with initial condition v(0) = v0,
we get:

vx =

[
v0 − vrel ln

(
1 −

kt
m0

)]
cosα0, (5)

vy =

[
v0 − vrel ln

(
1 −

kt
m0

)]
sinα0 − gt. (6)

As far as the initial rocket velocity is non-zero, the model
system used in this paper could be related with the movement
of the second or further stage in a multi-stage launch. Using
initial conditions x(0) = 0, y(0) = 0, and integrating equations
(5) and (6) over time, we find:

x =
[
(v0 + vrel)t + vrel

(m0

k
− t

)
ln

(
1 −

kt
m0

)]
cosα0, (7)

y =
[
(v0 + vrel)t + vrel

(m0

k
− t

)
ln

(
1 −

kt
m0

)]
sinα0 −

gt2

2
. (8)

At vrel → 0 and k → 0 (that is, in the case of zero thrust),
expressions (5)-(8) are transformed into ordinary equations
describing free projectile motion.

Let us introduce a set of dimensionless variables to reduce
the number of input parameters to the problem and make
the analysis of the equations of rocket motion simpler. We
denote: ux,y = vx,y/vrel is the dimensionless instant speed;
u0 = v0/vrel > 0 is the dimensionless initial speed; τ = kt/m0
is the dimensionless time (0 ≤ τ < 1); j = m0g/(kvrel) is the
dimensionless acceleration; ρx = kx/(m0vrel), ρy = ky/(m0vrel)
are the dimensionless Cartesian coordinates. In this case,
equations (5)-(8) can be rewritten as:

ux = [u0 − ln(1 − τ)] cosα0, (9)

uy = [u0 − ln(1 − τ)] sinα0 − jτ, (10)

ρx = [(u0 + 1)τ + (1 − τ) ln(1 − τ)] cosα0, (11)

ρy = [(u0 + 1)τ + (1 − τ) ln(1 − τ)] sinα0 −
jτ2

2
. (12)

Considering equations (11), (12), and taking into account the
equality

lı́m
τ→1

(1 − τ) ln(1 − τ) = 0, (13)

we have for values of τ close to 1:

ρy ≈ ρx tanα0 −
j
2
. (14)

Therefore, the idealized body’s trajectory is enclosed between
line ρy = ρx tanα0 and the line given by equation (14) (figure
1).

Figure 1. The body’s trajectory at α0 = 30◦, j = 2.5, and different values of u0.
The solid lines are drawn for 0 ≤ τ ≤ 1.

It should be noted that in reality the assumption τ → 1 is
unattainable, since the rocket engine has non-vanishing mass.
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For example, for rockets using dense components such as
liquid oxygen and kerosene as fuel, the ratio of fuel mass
to structural mass reaches 20 : 1. For rockets powered by
oxygen and hydrogen, this ratio is about 10 : 1. Taking this
fact into account, we introduce dashed line F in figure 1 to
approximately separate sections of trajectories with non-zero
fuel mass from those parts where our model no longer
correctly describes the movement.

At fixed values of α0, j, and relatively high value of u0, curve
ρy(ρx) has an inflection point (figure 1). As u0 decreases, two
local extrema (maximum and minimum) appear on this curve.
With a further decrease in the initial speed u0, the minimum
shifts to the region of negative values of ρy (figure 1).

The time points at which these local extrema are reached can
be found by solving equation uy(τ) = 0, where function uy(τ)
is given by equation (10). We have:

βτ = u0 − ln(1 − τ), (15)

where β = j/ sinα0 > 0. The equation (15) can be rewritten as:

−β(1 − τ) = u0 − β − ln(1 − τ). (16)

Converting this equation to exponential form, we derive:

−β(1 − τ) exp(−β(1 − τ)) = −β exp(u0 − β). (17)

Expression (17) is the equation relative to unknown variable
τ and it has the formal form: w exp(w) = z, where w =
−β(1−τ), z = −β exp(u0−β). The solution to this transcendental
equation (relative to variable w) is not expressed in terms
of elementary functions and is known as the multivalued
Lambert W(z)-function (also called the omega function,
product logarithm, or the inverse function) [13], [14] with
respect to the variable z. Thus,

−β(1 − τ) =W
[
−β exp(u0 − β)

]
. (18)

Then

τ =
W

[
−β exp(u0 − β)

]
+ β

β
. (19)

Since, in our case both argument z and solutions W(z)
should be real numbers (moreover, z is always negative),
we deal with only two branches of W(z) [14]. The principal
branch (W0) corresponds to the local minimum and gives the
values between −1 and 0, whereas the lower branch (W−1)
corresponds to the local maximum and gives the values below
−1. Therefore,

τmax =
W−1

[
−β exp(u0 − β)

]
+ β

β
, (20)

τmin =
W0

[
−β exp(u0 − β)

]
+ β

β
, (21)

In order to put in context the results, we turn back to the
original variables in equations (20), (21):

tmax =
m0

k
+

vrel sinα0

g
W−1

[
−

m0g
kvrel sinα0

exp
( v0

vrel
−

m0g
kvrel sinα0

)]
,

(22)

tmin =
m0

k
+

vrel sinα0

g
W0

[
−

m0g
kvrel sinα0

exp
( v0

vrel
−

m0g
kvrel sinα0

)]
.

(23)

It is known [14] that for negative values of z these two branches
of W(z)-function are defined only on interval −1/ exp(1) ≤ z ≤
0. Then, the condition for the existence of both extrema is the
following inequality: β > exp(β − u0 − 1) or

u0 < β − ln β − 1. (24)

For u0 = β− ln β− 1, τmax = τmin = (β− 1)/β (here we used the
special values of two branches: W0(−1/e) = W−1(−1/e) = −1).
If u0 > β− ln β−1, both extrema are absent. The above analysis
implies that β > 1. For 0 < β < 1 both solutions (20) and (21)
are negative and are not relevant for our consideration.

Figure 2 shows the dependences of the solutions of equations
(20) and (21) (the extrema points τextr) on u0 constructed at
two different values of β. At fixed value of β, τmax (τmin) is
a monotonically increasing (decreasing) function of u0. As β
increases, the values of τmax (τmin) decrease (increase) rapidly.

Figure 2. The solutions (20), (21) as functions of u0 at two different values of
β.

III. DISCUSSION

Let us consider equations (3) and (4). Equation (4) tells
us that under the influence of the horizontal component
of the thrust vx increases all the time. At the same time,
the vertical component vy of the velocity can change
non-monotonically. Indeed, if the vertical component of the
thrust (kvrel sinα0) is greater all the time than the gravity force
(m0g), then vy increases all the time. If kvrel sinα0 < m0g,
then vy is diminishing from the start. However, due to fuel
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consumption, the mass of the rocket decreases and at a certain
point in time t0, vy begins to increase. This time can be found
from the condition kvrel sinα0 = (m0 − kt0)g:

t0 =
m0

k
−

vrel sinα0

g
, (25)

or τ0 = 1− 1/β. The time t0 corresponds to the inflection point
on the trajectory (figure 1).

If, moreover, v0 sinα0 is relatively small, then vy has time to
go to zero (a local maximum on the trajectory) at time t0 and
then become negative (the rocket will descend for some time).
Subsequently, vy becomes positive again and the rocket begins
to ascend (the beginning of this interval corresponds to a local
minimum on the trajectory).

We can provide a physical motivation for equation (22) by
asking what the minimum launch velocity u0 is such that the
rocket will not fall back down and so the curves in figure 1
show no extrema. It follows from figure 2 that for β = 5 the
minimum value of u0 is equal to 2.5, whereas for β = 2 the
minimum value of u0 is approximately equal to 0.35.

It is seen from figure 1 that for u0 = 1.43, ρy turns negative
meaning that the rocket crashes unless you have launched
it off a cliff. An interested student might ask “What is the
minimum initial velocity to avoid ρy < 0?”. Similarly, a
student might wonder what the trajectory looks like when
dimensionless time is large enough that the rocket runs out of
fuel. We can suggest these topics as students’ homework or
even as an independent project.

IV. CONCLUSIONS

The variable mass projectile motion is a topic that is possibly
not explored deeply enough in undergraduate physics degree
curricula. In this paper, we try to fill this gap. The topic may
help students to better grasp such important physical concepts
as translational motion, thrust, trajectory, projectile motion,

etc. Finally, our consideration should help readers to observe
the differences between the classical projectile motion and the
trajectory of a rocket.

The topic can be recommended to students for further reading
when studying dynamics of systems with varying mass
or in physics electives. This issue can also be used as an
undergraduate project.
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