
Rev. Cubana Fis. 42, 20 (2025) ARTÍCULOS ORIGINALES
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We perform molecular dynamics simulations of hydrogen molecules
inside fullerene cages, incorporating quantum effects via the
Feynman-Hibbs effective potential method. The distance between
hydrogen atoms in the molecule is kept fixed by using the constraint
dynamics algorithm. We evaluate the energetic properties and the
influence of quantum effects for hydrogen molecules in fullerene
cages of varying size and geometry (Cn, n = 24, 28, 60, 70),
and within a wide range of thermodynamics conditions (i.e., from
T = 130 K to T = 320 K). We compute the temperature dependence
of quantities such as the translational and rotational kinetic energies,
the total energy and the contribution of quantum effects. It is found
that quantum corrections to the total energy are significant even
at room temperature. We discuss the possible influence of these
properties on the hydrogen storage capacity of these materials.

Simulamos la dinámica de moléculas de hidrógeno dentro de
fulerenos en forma de jaula, incorporando los efectos cuánticos
mediante el método del potencial efectivo de Feynman-Hibbs. La
distancia entre los átomos de hidrógeno se mantiene fija utilizando
el método de dinámica molecular con ligaduras. Evaluamos las
propiedades energéticas y la influencia de los efectos cuánticos
de moléculas de hidrógeno en fulerenos de distintos tamaños y
geometrı́as (Cn, n = 24, 28, 60, 70), dentro de un rango amplio de
condiciones termodinámicas (T = 130 K hasta T = 320 K). Se estudió
la dependencia, con respecto a la temperatura, de magnitudes
como las energı́as cinéticas de traslación y de rotación, la energı́a
total y la contribución de los efectos cuánticos. Se determinó
que las correcciones cuánticas a la energı́a son significativas
incluso a temperatura ambiente. Discutimos la posible influencia de
estas propiedades sobre el almacenamiento de hidrógeno en estos
materiales.

Keywords: Molecular dynamics simulations (Simulaciones de dinámica molecular); Semiclassical molecular dynamics (dinámica molecular
semiclásica); Hydrogen storage (almacenamiento de hidrógeno).

I. INTRODUCTION

Today, hydrogen is considered one of the main alternatives
to fossil fuels for mobile applications [1]. Hydrogen is
an environmentally friendly renewable energy carrier with
promising applications in various sectors. For example, efforts
are underway to adopt hydrogen as a fuel in transportation,
stationary and portable back-up power plants, power supply
to off-grid areas, among other usages [2].

Despite its high energy density and environmentally safe
nature, large-scale exploitation of hydrogen as a fuel
constitutes a challenge for modern science, particularly
concerning safe and efficient hydrogen storage for mobile
applications. Various technologies have been developed to
store hydrogen, such as compressed hydrogen gas tanks,
liquefaction, chemically in the form of solid hydrides or by
spillover of hydrogen, or by physical adsorption in porous
materials [2–6]. Currently, none of these methods can meet
the current reference U.S. Department of Energy goals for
efficient on-board hydrogen storage, or they bear high energy
consumption or high material costs [1].

Physisorption on nanostructured surfaces is one of the most
promising alternatives to store hydrogen due to the typically

high energy density attained, the reversibility, and the fast
kinetics [7]. Specifically, hydrogen uptake by carbon-based
nanomaterials provides valuable insight into the microscopic
mechanisms underlying the adsorption process. The wide
variety of thermodynamically stable carbon allotropes enables
several parameters, such as the pore size and the binding
energy, to be tuned almost continuously. Therefore, despite
exhibiting lower storage capacities than more complex
materials (for example, metal-organic and covalent-organic
frameworks), carbonaceous materials remain as widespread
model systems for studying H2 physisorption [8].

While several authors addressed the evaluation of quantum
effects on hydrogen physisorption within the featureless
particle approximation (see [9], and references therein),
studies of rotational quantum dynamics of adsorbed
hydrogen molecules are scarce in the literature [10].

The purpose of this paper is to investigate the quasi-classical
dynamics of hydrogen molecules encapsulated in fullerene
cages of varying sizes, with a focus on the energetics and
the emergence of quantum effects. Fullerenes constitute
paradigmatic examples of curved carbon nanostructures.
They can be regarded as the elementary building blocks
of fullerites, which are appealing as hydrogen storage
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media [11]. In Section Methodology, we describe the
computational approach to effective potential molecular
dynamics simulations of H2 molecules inside fullerene cages.
The computed energetic properties of endohedral H2@Cn
molecules are presented in section Results and discussion. The
main findings and some perspectives are summarized in
section Conclusions.

II. METHODOLOGY

Within the constraint dynamics method [12], the positions of
the hydrogen atoms obey the following equations of motion:

m ¨⃗ri = f⃗i + γ⃗i j(t), (1)

where r⃗i (i = 1, 2) is the position of the hydrogen atom ith,
f⃗i is the force exerted on each H atom by the fullerene cage
and m is the hydrogen atomic mass. The symbols γ⃗i j (i , j)
denote intramolecular constraint forces introduced to keep
the distance between hydrogen atoms constant, that is, at each
point in time:

|⃗r12(t + ∆t)|2 = |⃗r21(t + ∆t)|2 = l2. (2)

Here, ∆t = 1 fs is the time step, l = 0.74 Å is the equilibrium
bond distance in the hydrogen molecule.

The positions r⃗i and velocities v⃗i are propagated as follows:

r⃗i(t + ∆t) = r⃗i(t) + v⃗i(t)∆t +
1
2

a⃗i(t)∆t2, (3)

v⃗i(t + ∆t) = αv⃗i(t) +
1
2
[
a⃗i(t) + a⃗i(t + ∆t)

]
∆t, (4)

where a⃗i(t) = −∇iV(⃗r)/m is the instantaneous acceleration of
the ith particle. The vector r⃗ = (⃗r1, r⃗2) represents the positions
of the two hydrogen atoms.

Equations (3) and (4) correspond to the velocity Verlet
algorithm [12], augmented by introducing the velocity
rescaling factor:

α =

√
Kt

K
, (5)

which enforces the canonical distribution of the total kinetic
energy of the system. The target value Kt of the kinetic
energy is drawn randomly from the canonical equilibrium
distribution for the kinetic energy [13]:

P̄(Kt)dKt ∝ KN f /2−1
T e−βKt dKt. (6)

N f is the total number of degrees of freedom in the system.

The interaction potential V between the hydrogen molecule
and the (frozen) host structure is modeled as a superposition
of pairwise interactions of the form:

V(⃗r) =
∑
i,ν

Ae−a|⃗ri−r⃗ν| −
C∣∣∣⃗ri − r⃗ν
∣∣∣6
 , (7)

where A, a, and C are constant parameters fitted to ab initio
data: A = 12676 kcal·mol−1, a = 3.5763Å−1, C = 200.185
kcal·mol−1Å6 [14]. r⃗ν is the position of each carbon atom in
the fullerene cage.

The well depth of the C-H pair potential in equation (7) is 6.3 ·
10−2 kcal·mol−1, and the minimum is attained at an interatomic
separation of 3.4 Å. Comparatively, the equilibrium C-H
distance is 1.46, 1.28, 0.97, and 0.89 times larger than the
cage radii of C24, C28, C60, and C70 fullerenes, respectively
[15]. Therefore, we can expect guest molecules to be tightly
confined by repulsive forces at the centre of the C24 and
C28 cages, while the two larger fullerenes display interaction
potential minima at the centre of the cavity (for C60), and
slightly displaced from the centre (for C70).

As a result of the mismatch between the frequency of the host
phonons and the characteristic time scale of the guest molecule
motion, the influence of the vibrations of carbon atoms on the
computed thermodynamic properties is negligible (within the
investigated temperature range). A similar result has been
verified for hydrogen storage in carbonaceous nanomaterials,
e.g., using frozen phonon models [25]. Therefore, the results
reported in following section were obtained assuming a frozen
host structure.

In order to account for quantum effects at finite temperature
within a molecular dynamics framework, we consider atoms
moving on the Feynman-Hibbs effective potential:

VFH (⃗r) = V(⃗r) +
βℏ2

24m

∑
i

∇
2
i V(⃗r). (8)

In equation (8),∇2
i is the Laplacian operator with respect to the

coordinates of particle i, β = 1
kBT is the inverse temperature, kB

is the Boltzmann constant, and ℏ is the Planck’s constant.

The Feynman-Hibbs effective potential has been extensively
used to incorporate moderate quantum effects [23, 24]. The
second, temperature-dependent term in equation (8) accounts
for the effects of quantum delocalization, i.e., it corresponds to
the path integral average of position-dependent observables
around the classical path, over a region of size equal to the De
Broglie thermal wavelength

√
2πβℏ2/m.

For each fullerene cage and for every temperature T, the
simulation procedure can be summarized as follows. A
hydrogen molecule with random orientation is initially
placed inside the carbon framework. The initial position
of the molecular centre of mass is assigned randomly
around the center of the cage, following a three-dimensional
Gaussian distribution of standard deviation equivalent to
40 % of the cage radius. Initial velocities of the centre
of mass along each Cartesian axis are drawn from
the corresponding Maxwell-Boltzmann distribution. Upon
thermalization, properties are calculated as averages over
trajectories starting from 40 different initial conditions. In turn,
each trajectory is propagated for 150,000 simulation steps.

Furthermore, we examine the validity of a simple model
of H2@C60 and H2@C70 endohedral molecules, consisting of
decoupled rotational and centre of mass translational motions.
To this purpose, the computed average total energies of H2 in
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C60 and C70 fullerene cages were fitted to the superposition
of the internal energies of a three-dimensional isotropic
harmonic oscillator (of mass equal to 2m, its frequency ω is
considered as a fitting parameter):

3
2
ℏω +

3
2
ℏω e−βℏω

1 − e−βℏω
, (9)

and of a free rigid rotor (with rotational constant Be) [22]:

−
∂
∂β

34 ln

∑
l even

(2l + 1)e−βBel(l+1)


+

1
4

ln

∑
l odd

(2l + 1)e−βBel(l+1)


 .

(10)

In practice, the sums in equation (10) were approximated with
the first three non-zero terms.

III. RESULTS AND DISCUSSION

In the following, we present the characterization of the
energetics of H2@Cn endohedral fullerenes (n = 24, 28, 60, 70)
in the range of temperatures from 130 K up to 320 K.

For each system, the computed total kinetic energy
(translational plus rotational) is equal to N f /2β, up to
numerical fluctuations. However, due to the emergence of
quantum effects, the kinetic energy is not evenly partitioned
among all degrees of freedom at thermal equilibrium.

Figure 1 illustrates the influence of the confinement potential
on the rotational motion of the guest molecule. It can be
noticed that H2 rotation is subject to larger energy barriers
in the smaller fullerenes. Still, due to the small bond length
of H2, the molecule is able to complete rotations even in the
smallest C24 cage.

On the one hand, the rotational energy of H2 molecules
trapped inside C24 and C28 cages remains rather close and
increases with a slope similar to that predicted by the energy
equipartition principle, at all temperatures. On the other hand,
the rotational energy of hydrogen molecules in C60 and C70
fullerenes is higher than anticipated by the equipartition
theorem. For these two fullerenes, the ⟨Krot⟩(T) curves present
steeper slopes on average, compared both to the energy
equipartition theorem and the smaller C24 and C28 cages. It can
be seen that the average rotational energy of H2 is very similar
in C60 and C70 above 220 K, while the former is somewhat
lower for temperatures between 130 K and 180 K.
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Figure 1. Average rotational kinetic energy ⟨Krot⟩ of hydrogen molecules
encapsulated in C24 (up triangles), C28 (stars), C60 (squares), and C70
(circles), as a function of temperature. The dashed line represents the
temperature dependence of the rotational energy of H2, as predicted by the
energy equipartition theorem.

This behaviour can be rationalised by considering the
differences in the confinement potential exerted on H2
molecules by the host structures. The equilibrium position of
the H2 molecule was at the centre of the cavity in C60, whereas
two symmetrical equilibrium positions were observed near
the centre of the cage in C70, oriented along the major axis.
As a consequence of the nearly spherical symmetry, and the
size of the buckminsterfullerene (the cage radius is 3.53Å)
and C70 (geometrical mean radius of 3.83Å), the encapsulated
hydrogen molecule behaves almost as a free rotor. Featuring
the largest molecular rotational constant in nature (Be/kB =
87.17 K), the energy spacing between low-lying rotational
levels of the free H2 molecule (i.e., 2Be, 4Be, 6Be, ...) are similar
to or larger than kBT within the range of thermodynamic
conditions investigated here.

The discrete character of the rotational spectra of the
encapsulated molecule lies at the origin of the observed
deviations from the energy equipartition principle. Although
the Feynman-Hibbs method can not take the discrete
character of the molecular rotational spectra into account
explicitly, the method has been shown to accurately reproduce
thermodynamic properties (e.g., the free energy) even in
the ultra-quantum limit (i.e., for En+1 − En ≫ kBT, where n
represents a collective quantum number labelling the energy
levels of the system) [17].

For the C24 and C28 cavities, rotational hindering by the
anisotropic hydrogen-cage interaction potential creates a
higher density of rotational states within the thermal and
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subtermal energy regions, and the behaviour predicted by
the energy equipartition theorem is approximately recovered.
It can be seen, that within the investigated temperature range,
the tighter the confinement imposed by the host structure,
the smaller the rotational energy of hydrogen molecules
encapsulated in the cavity.
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Figure 2. Average translational kinetic energy ⟨Ktra⟩ of H2 molecules
encapsulated in fullerene cages (C24, C28, C60, and C70), as a function of
temperature. The dashed line represents the temperature dependence of the
translational energy of H2, as predicted by the energy equipartition theorem.

In figure 2, we show the average translational kinetic energy
⟨Ktra⟩ of hydrogen molecules trapped in the fullerene cages.
Since the total kinetic energy is proportional to temperature,
the temperature dependence of ⟨Ktra⟩ mirrors that of the
average rotational energy. That is, for hydrogen molecules
in C24 and C28, ⟨Ktra⟩(T) increases linearly following a
similar trend to that predicted by the energy equipartition
theorem. Conversely, the temperature-dependent, average
translational kinetic energy of H2 in C60 and C70 is
comparatively smaller and flatter than for the two smallest
fullerenes.

This trend suggests that nanoporous materials displaying
inner cavities with sizes and shapes resembling C60 and
C70 cages would be more suitable as hydrogen storage
media. Indeed, in these nanostructures, a larger fraction
of thermal energy takes the form of rotational rather than
translational energy of H2 molecules. This property translates
in smaller vibrational amplitudes of guest molecules around
their equilibrium positions in the cage. Since the equilibrium
distance of the isotropic average of H2-H2 intermolecular
interaction is 3.4Å [18], both C60- and C70-like pores can
accommodate two H2 molecules, at the expense of somewhat

increased barriers to rotation due to the interaction with pore
walls.

The influence of quantum effects on the energetics of H2@Cn
endohedral molecules can be quantified in terms of the
extent of the temperature-dependent contribution in the
Feynman-Hibbs potential (equation (8)). The plots in figure 3
show that quantum effects are at least one order of magnitude
larger in C24 and C28, compared to C60 and C70, owing to the
tightest confinement imposed by the smaller nanostructures
on the guest molecules.
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Figure 3. Average quantum contribution ⟨QFH⟩ in the effective
Feynman-Hibbs potential for H2@Cn (n = 24, 28, 60, 70), as a function of
temperature.

The magnitude of quantum effects gradually decreases as
temperature gets larger, i.e, at T = 320 K, the average quantum
contribution to the effective potential drops down to 41 % of
its value at T = 130 K, for hydrogen trapped inside C24 and
C28 cages. Within the same interval of temperature, the size
of this contribution declines by 43 % and 50 % for the C60 and
C70 fullerenes respectively.

In figure 4, we show the total energy of encapsulated H2
molecules as a function of temperature. It can be seen that this
quantity behaves quite differently in response to cage size.

In C24 and C28, guest molecules are confined by repulsive
interactions with the cage walls. The hydrogen molecules
trapped in these structure undergo a 7 % reduction of
their total energy when temperature increases from T =
130 K up to 320 K. Such diminution owes chiefly to the
reduction of the temperature-dependent contribution to the
effective Feynmann-Hibbs potential by 60 % (13.4 kcal·mol−1

and 8.3 kcal·mol−1 for H2@C24 and H2@C28, respectively).
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The Feynmann-Hibbs quantum correction gets smaller as
a consequence of the decrease of the De Broglie thermal
wavelength.
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Figure 4. Average total energy ⟨E⟩ of H2 molecules trapped in C24, C28,
C60, and C70 fullerene cages, as a function of temperature. In the bottom
panel, star symbols correspond to the fitting to the sum of internal energies
of a three-dimensional isotropic harmonic oscillator and a free rigid rotor
((equations (9) and (10)).

Notably, quantum effects are non negligible for H2 molecules
in fullerene cages, even at room temperature. Indeed,
quantum corrections amount to 14 % and 16 % of the total
energy at T = 130 K in C24 and C28 cages, respectively, and
their participation reduces down to 6 % and 7 % at T = 320 K.

Inside C60 and C70 fullerenes, hydrogen molecules remain
bound to the cage below room temperature. At T = 130 K,
the average adsorption energy is 1.8 kcal·mol−1 in the
buckminsterfullerene, and 2.3 kcal·mol−1 in C70. The binding
energy monotonously decreases as temperature rises, which
indicates a gradual deterioration of the hydrogen storage
capacities of cage-like fused-ring carbon nanostructures
within this temperature range.

As expected, the quantum correction to the total energy
decrease with temperature. In C60, this contribution reduces
from 0.45 kcal·mol−1 at T = 130 K to 0.18 kcal·mol−1 at
T = 320 K. In C70 fullerenes, it decreases from 0.19 kcal·mol−1

at T = 130 K down to 0.08 kcal·mol−1 at T = 320 K.

The computed total energies ⟨E⟩(T) of the H2@C60 and H2@C70
endohedral molecules are well reproduced by the sum of the
internal energies of a three-dimensional isotropic harmonic
oscillator and a rigid rotor (equations (9) and (10), respectively,
see bottom panel in figure 4). The fitting scheme yields values
ω = 404.2 K and 221.8 K for the energy spacing between

translational energy levels in C60 and C70, respectively. The
deviation between the results of the fitting and previous
experimental and theoretical evaluations of the fundamental
vibrational frequency of H2 centre of mass in these fullerenes
are within 1 % and 15 % [10,19–21]. This level of agreement is
satisfactory, considering that the functional form employed
in the fitting does not account for the anharmonicity and
weak anisotropy of the confining potential, nor the coupling
between orbital and rotational angular momenta, and that the
results of previous experimental and theoretical calculations
show notable variations [20].

IV. CONCLUSIONS

We report quasi-classical simulations of the translational
and rotational dynamics of hydrogen molecules inside four
quasi-spherical fullerene cages, namely C24, C28, C60, and
C70. Energetic properties are computed from 130 K to 320 K,
covering a sizable part of the temperature range of interest for
storage technology applications.

The rise in temperature causes the average rotational
and translational kinetic energies of embedded hydrogen
molecules to increase (roughly) linearly. The energy spacing
between adjacent low-lying rotational levels of the H2
molecule in buckminsterfullerene and in C70 is comparable
to or greater than kBT, which causes deviations from the
energy equipartition principle. Overall, the influence of
quantum delocalization on energetic properties remains
non-negligible over the entire range of thermodynamic
conditions investigated here.

Novel materials featuring highly ordered and randomly
packed assemblies of carbon nanocages have recently been
synthesized and investigated with respect to their potential
applications for energy storage and conversion [16]. The
connection between the energetics of endohedral H2@Cn
molecules, and the hydrogen storage capacities of these
carbon-based nanostructures is as follows.

In these materials, efficient hydrogen uptake can only be
achieved if there are enough large pores. For these fullerenes,
the H2-surface interaction prevents adsorption. As it happens,
the tight confinement imposed on the H2 molecules by the
smaller host structures (C24, C28) triggers marked quantum
delocalization effects.

Nanocavities resembling C60 and C70 appear to be suitable
hydrogen storage media, since hydrogen molecules remain
bound to the cage for temperatures up to room temperature.
The hydrogen storage capacities of C60- and C70-like
nanocages will result from a trade-off between the higher
binding energy of hydrogen to the host structure, and the
possibility to accommodate more than one guest molecule
per pore, owing to the smaller vibrational amplitude of H2
translational motion in the cage.

Based on the present results, we plan in the future to extend
the methodology to model hydrogen uptake by more complex
nanomaterials (e.g., assemblies of carbon nanocages, metal-
and covalent-organic frameworks) in the high-density regime
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(i.e., by including several interacting H2 molecules). In this
perspective, the motion of host atoms may become relevant
for more flexible nanoporous materials. Within the present
approach, the inclusion of vibrations of host structure is
straightforward. Work along this line is underway.
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