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AUTOMATIC DIAGNOSIS OF RHEUMATOID ARTHRITIS FROM
HAND RADIOGRAPHS USING CONVOLUTIONAL NEURAL
NETWORKS
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The traditional diagnosis method of Rheumatoid Arthritis (RA)
consists in the evaluation of hands and feet radiographs. However,
still for medical specialists it turns out to be a complex task
because many times the correct diagnosis of the disease depends
on the detection of very subtle changes for the human eye. In
this work, we developed a system based on Artificial Intelligence
(AI), using Convolutional Neural Networks (CNN) for the automatic
detection of RA from hand radiographs. The model efficiency is
measured with 15 cases achieving an accuracy of 100 %. Results
of the experiments conducted, showed a superior performance
compared to similar state-of-the-art systems reported in the
consulted bibliography. This model would be useful for Cuban
medicine as a diagnosis tool.

El método tradicional de diagnóstico de la Artritis Reumatoide (RA)
consiste en la evaluación de radiografı́as de manos y pies. Sin
embargo, aún para los especialistas médicos resulta una tarea
compleja pues, en muchas ocasiones, el correcto diagnóstico
de la enfermedad depende de la detección de cambios muy
sutiles para el ojo humano. En este trabajo, se desarrolla un
sistema basado en inteligencia artificial (AI), empleando Redes
Neuronales Convolucionales (CNN) para la detección automática
de la RA en radiografı́as de manos. La eficiencia del modelo es
medida con 15 casos obteniendo una precisión del 100 %. Los
resultados obtenidos por los experimentos realizados muestran
un rendimiento superior a los sistemas similares reportados en la
bibliografı́a consultada. Este modelo puede ser de utilidad para la
medicina cubana como una herramienta de diagnóstico.

PACS: Medical applications (Aplicaciones mádicas), 42.62.BE; neural networks (redes neuronales), 07.05.Mh; image processing
(procesamiento de imágenes), 07.05.Pj

I. INTRODUCTION

Rheumatoid arthritis is a relatively common disease, it is
present in approximately 1 % of the world population [1]. It
is a chronic autoimmune systemic illness, characterized by
a persistent inflammation of joints, producing atrophy and
bone rarefaction that evolves through very painful outbreaks
and typically affects the small joints, producing their
progressive destruction and generating different degrees of
deformity and functional disability [2]. Figure 1 shows a
radiograph of a patient with an advanced stage of the disease.

Radiological examination is the fundamental reference
method for the detection of RA. Methods such as Larsen [3]
and Sharp [4] have been used for diagnosis, however, they
are time-consuming processes, since they require the revision
of all the joints of the affected areas and errors of appreciation
are likely to occur.

Currently in Cuba, there are around 100 rheumatologists for
11 million inhabitants, distributed in such a way that in
some provinces there may be up to one or two specialists,
an insufficient number to cover the needs of the Cuban
population. Therefore, the process of detecting this type
of disease is extremely slow, forcing the patients to travel
to very distant centers to receive an accurate diagnosis.

Generally, these patients are people with limitations and
physical disabilities produced by the disease itself, and under
these conditions, they have to go through long waiting lists,
causing the progression of the illness and the exacerbation of
symptoms.

Figure 1. Radiograph example of a patient with RA used in this study.

Advances in AI, especially CNN have opened new
possibilities in the field of medicine, developing systems for
detecting dermatological diseases [5], lung pathologies [6],
fractures and bone damage [7], among others, with the aim
of minimizing the margin of error in medical diagnosis and
facilitating an early detection of illnesses.
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II. RELATED WORKS

In Langs et al. [8] a method for an automatic quantification of
joint space narrowing and erosions in RA was developed. It
can be used to detect the disease progression using an active
shape model and Adaboost classifier.

In the study conducted by Murakami et al. [9], the diagnosis of
Periarticular Osteoporosis (one of the symptoms of RA) was
attempted. The system determines density characteristics
of hand X-rays using histogram analysis, co-occurrence
matrices, Fourier transformations and extraction of line
components.

Chokkalingam & Komathy [10] proposed an automatic
diagnosis system of RA from hand radiographs, using several
digital image-processing algorithms for feature extraction
and a neural network for its classification. Twenty-three
images were used for training the model but no validation
tests were performed, therefore its accuracy is unknown.

Murakami et al. [11] implemented a system for diagnosing
RA, based on the detection of bone erosion. In this study,
a segmentation algorithm is used to extract the area of
the phalanges and a CNN for detecting the presence of
the pathology. For training the model, 129 radiograph
images were used. The validation was performed with 30
cases with RA, obtaining a true-positive rate of 80.5 % and
a false-positive rate of 0.84 %, however the false-positive
number of the segmentation algorithm was 3.3 per case.

Current implementations of systems for detecting RA from
hand radiographs present limited results, with high error
rates and low generalization. Their reliability must improve
in order to be used as a diagnosis tool in the medical
environment, which has no tolerance to errors due to the
inherent importance of this task.

III. METHODOLOGY

For the development of this work, we selected several
CNN architectures and trained them end-to-end with hand
radiograph images using only their pixel information. With
these experiments we seek to evaluate the capacity of the
models to learn RA visual features in a similar way a
rheumatologist uses in a diagnosis.

III.1. Image dataset

The images used in this study came from the department
of Rheumatology in Hermanos Ameijeiras Hospital, located
in Havana, Cuba. They consist in 92 gray-scale digital
radiographs of both hands, used by medical specialist in their
diagnosis of RA. In Table 1 the characteristics of this dataset
are displayed.

III.1.1. Ethics

All medical images are anonymous, it is not possible to relate
the patient’s name to the radiograph, and they were only

used for the development of this work, following all rules of
confidentiality.

Table 1. Image database characteristics.

Number of cases 92
With RA 37
Without RA 55
Image resolution 4280x3520 pixels
Image format DICOM
Color depth 12 bits

III.2. Software tools

For the implementation of neural networks, the open source
library Keras was used. It is available in Python, and uses
Google’s Tensorflow as its backend. We chose it for its
simplicity, speed and control during the design of complex
networks. OpenCV and Numpy modules were used to
handle and process the images.

III.3. Preprocessing

In the first stage of data processing, the pixel matrix of the
image was extracted, discarding all metadata information
attached to the DICOM file header such as patient’s name,
sex, age, etc; ensuring the anonymity of each case in this
research. Then, the resolution of the image was decreased
from 4280x3520 to 256x204 pixels, keeping only 0.3466 %
of the original data. Finally, the values of the pixels were
normalized in a range between 0 and 1.

III.3.1. Artificial augmentation of the dataset

Training a model with small amounts of data is a challenging
task. To face this problem the machine learning community
has been using different procedures to artificially extend
datasets.

Transforming the original radiographs with a random
combination of rotation, zooming, stretching and flipping
allow us to improve the classification results of the CNN
architectures due to the increment of the training examples.
It is important to empathize that the transformations applied
do not affect the visual features in small regions of the original
images, and instead they allow the networks to learn these
features in different angles and sizes.

The models were trained with different copies in each epoch.
Then, for example, after 1000 epochs each model have learned
from 77 000 different instances. In Figure 2 some examples of
transformed images are shown.

III.3.2. Dataset division

The dataset was divided in two, one for system training
and other to be used as a reference point for validation.
The images selected for validation were chosen randomly,
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obtaining 5 images of patients with RA and 10 without RA.
This division appears in Table 2.

Table 2. Image database characteristics.

Cases Training Validation
With RA 32 5
Without RA 45 10
Total 77 15

Figure 2. Examples of generated images with transformations. Image (a) is
the original. (b) was obtained with horizontal flipping and height distortion,
zooming and width distortion was used to produce (c) and (d) was generated
with vertical flipping, zooming and rotation.

III.4. Architecture selection

Different CNN models were initially considered like
InceptionV3 [12] and VGG16 [13], which obtained notable
results in the ILSVRC competitions, but presented a high
degree of overfitting in all tests performed, mainly due to
the large number of parameters they had in relation to
the dataset size used for their training. As a result of the
above, architectures with a smaller number of parameters
and significantly less operations were chosen.

III.4.1. LeNet

The first architecture implemented was a modified version
of LeNet [14]. To achieve better results, changes were made
in relation to the original paper, such as increasing the
number of feature maps, using 3x3 kernels instead of 5x5,
modifying the activation functions to ReLU, changing the
output function to Softmax and adding more neurons in full
connection layers. We used dropout after max pooling layers
and before output layer as a regularization technique. All
model specifications can be found in Table 3.

III.4.2. Network in Newtwork

A minimalist variant of Network in Network [15] was used,
in order to reduce the computational cost of the original
architecture. Max pooling layers were added and fewer
convolutional filters and layers were implemented. Dropout

was used after max pooling layers. The proposed model is
described in Table 4.

Table 3. Modified version of LeNet architecture

Layer Parameters
Input image shape = 256x204 pixels
Convolution #1 kernel size = (3,3), strides = (2,2),

filters = 64, activation function = ReLU
Max pooling pool size = (3,3), strides= (2,2)
Dropout probability = 0.1
Convolution #2 kernel size = (3,3), strides = (1,1),

filters = 128, activation function = ReLU
Max pooling pool size = (3,3), strides= (2,2)
Dropout probability = 0.1
Full Connection #1 number of neurons = 256

activation function = ReLU
Full Connection #2 number of neurons = 256

activation function = ReLU
Dropout probability = 0.5
Full Connection #3 number of neurons = 2

activation function = Softmax

III.4.3. SqueezeNet

The last architecture implemented was SqueezeNet [16],
no changes were made in relation to the original paper
except adding dropout after max pooling layers. These model
characteristics are displayed in Tables 5 and 6.

Table 4. Reduced version of Network in Network.

Layer Parameters
Input image shape = 256x204 pixels
Convolution #1 kernel size = (5,5); strides = (1,1)

filters = 32; activation function = ReLU
Max pooling pool size = (2,2); strides = (2,2)
Dropout probability = 0.1
Convolution #2 kernel size = (3,3); strides = (1,1)

filters = 32; activation function = ReLU
Max pooling pool size = (2,2); strides = (2,2)
Dropout probability = 0.1
Convolution #3 kernel size = (3,3) strides = (1,1);

filters = 32; activation function = ReLU
Max pooling pool size = (2,2); strides = (2,2)
Dropout probability = 0.1
Convolution #4 kernel size = (3,3); strides = (1,1)

filters = 64; activation function = ReLU
Convolution #5 kernel size = (3,3); strides = (1,1)

filters = 64; activation function = ReLU
Convolution #6 kernel size = (3,3); strides = (1,1)

filters = 64; activation function = ReLU
Max pooling pool size = (2,2); strides = (2,2)
Dropout probability = 0.5
Convolution #7 kernel size = (1,1); strides = (1,1)

filters = 2; activation function = ReLU
Global Average activation function = Softmax
Pooling

III.5. Hyperparameters

Due to the complexity and high dimensionality of the system,
some parameters were selected by default to present this
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preliminary results. Default parameters can be seen in the
original papers cited on each case.

Table 5. SqueezeNet architecture with dropout.

Layer Parameters
Input image shape = 256x204 pixels
Convolution #1 kernel size = (3,3); strides = (2,2)

filters = 64; activation function = ReLU
Max pooling pool size = (3,3); strides= (2,2)
Dropout probability = 0.1
Fire module #1 squeeze = 16; expand = 64
Fire module #2 squeeze = 16; expand = 64
Max pooling pool size = (3,3); strides= (2,2)
Dropout probability = 0.1
Fire module #3 squeeze = 32; expand = 128
Fire module #4 squeeze = 32; expand = 128
Max pooling pool size = (3,3); strides= (2,2)
Dropout probability = 0.1
Fire module #5 squeeze = 48; expand = 192
Fire module #6 squeeze = 48; expand = 192
Fire module #7 squeeze = 48; expand = 256
Fire module #8 squeeze = 48; expand = 256
Convolution #2 kernel size = (1,1); strides = (1,1)

filters = 2; activation function = ReLU
Global Average activation function = Softmax
Pooling

III.5.1. Loss function

Being a classification problem of two classes, binary cross
entropy loss function was used (1)

E = y log(p) + (1 − y) log(1 − p), (1)

where y is the correct output (0 or 1) and p is the predicted
probability.

Table 6. Fire module.

Layer Specifications
Convolution #1 kernel size = (1,1), strides = (1,1),

filters = squeeze, activation function = ReLU
Convolution #2 kernel size = (1,1), strides = (1,1),

filters = expand, activation function = ReLU
Convolution #3 kernel size = (3,3), strides = (1,1),

filters = expand, activation function = ReLU
Concatenation Convolution #2 & Convolution #3

III.5.2. Optimization algorithm

For the selection of the optimization algorithm SGD,
Adadelta [17], Adam [18] and Adamax [18] were considered,
comparing their results after 100 epochs of training. These
tests were repeated 3 times with all models (averaging their
outputs) and the best results are shown in Figure 3. For Adam
and Adamax the learning rate was set at 0.001 and 0.1 for SGD
and Adadelta. Despite using SGD and Adadelta a learning
rate 100 times higher, still presented a lower performance.
Adam was chosen for having the fastest convergence result.

III.5.3. Learning rate

A variable learning rate was used, starting with 0.001 (default
parameter for Adam), then it is reduced with a step function.
This process is detailed in Figure 4.
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Figure 3. Learning rate decay is visualized over training epochs. A step
function decay is used and the learning rate is divided by 2 after 400 epochs
of training, then by 5 after 700 and bA comparison between Adam, Adamax,
SGD and Adadelta was performed, averaging the outputs of the 3 models
after 100 epochs of training.
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Figure 4. Learning rate decay is visualized over training epochs. A step
function decay is used and the learning rate is divided by 2 after 400 epochs
of training, then by 5 after 700 and by 10 after 900. Beyond 1000 epochs,
the learning rate was fixed at 0.00001.

IV. RESULTS

All models were trained 15 times with the same dataset,
in Figure 5 best five training iterations are shown. Table 7
displays best validation results, including the number of the
epoch in which they were obtained and loss error, beyond
that point the models began to show signs of overfitting.
LeNet and Network in Network reached their maximum
point for a accuracy of 93 % and SqueezeNet, correctly
classified all images scoring 100 %.

V. DISCUSSION AND CONCLUSIONS

In this study we trained and evaluated several CNN
architectures with our own Cuban dataset. We propose a
system that detects RA from hand radiographs without
extensive preprocessing or handcrafted features, only using
raw pixel values and achieving better accuracies than similar
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models of the state of the art. These preliminary results show
the potential of this system, and in future works we will seek
to extend the dataset in order to present a reliable diagnosis
tool for Cuban medicine.

Table 7. Top validation results.

Model Accuracy Loss Epoch number
LeNet 93 % 0.50 891
Network in Network 93 % 0.22 1248
SqueezeNet 100 % 0.088 1761
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Figure 5. Best five training iterations of LeNet, Network In Network (NIN)
and SqueezeNet, showing their validation accuracy.
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	INTRODUCTION
	Related works
	Methodology
	Image dataset
	Ethics

	Software tools
	Preprocessing
	Artificial augmentation of the dataset
	Dataset division

	Architecture selection
	LeNet
	Network in Newtwork
	SqueezeNet

	Hyperparameters
	Loss function
	Optimization algorithm
	Learning rate


	Results
	Discussion and Conclusions
	Acknowledgements

