The Schrödinger Equation in the Context of Fluid Mechanics

  • D. Cabrera Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, España.
  • P. Fernández de Córdoba Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, España.
  • J. M. Isidro Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, España.
  • J. M. Valdés-Placeres Departamento de Matemáticas, Universidad de Pinar del Río “Hermanos Saíz Montes de Oca”, Cuba.
  • J. Vazquez-Molina Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, España.

Abstract

We derive a mapping between the Schrödinger equation and the Navier-Stokes equation, which generalizes the one proposed by Madelung in 1926 with the Euler equation. Since fluid mechanics is the paradigm of an emergent theory, these maps support the interpretation of quantum mechanics as an effective theory, emerging from a more fundamental one. In the new mapping, moreover, the quantum potential is identified with the viscous term, in line with recent studies that claim that quantumness has a dissipative origin.

Published
Nov 14, 2016
How to Cite
CABRERA, D. et al. The Schrödinger Equation in the Context of Fluid Mechanics. Revista Cubana de Física, [S.l.], v. 33, n. 2, p. 98-101, nov. 2016. ISSN 2224-7939. Available at: <http://revistacubanadefisica.org/index.php/rcf/article/view/RCF_32-02_098_2016>. Date accessed: 20 july 2019.
Section
Original Articles