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Sumario. Aplicando el Método de Homogeneización Asintótica se obtienen fórmulas analíticas exactas para todas las 
propiedades efectivas de compuestos termo-piezoeléctricos formados por cualquier número finito de láminas.  Se mues-
tran cálculos numéricos para ilustrar la relevancia de estos resultados en aplicaciones al diseño de transductores para 
imágenes biomédicas e hidrófonos. 
 
Abstract. Exact analytical formulae for the effective properties of periodic multilayered thermopiezoelectric composites 
are derived using the asymptotic homogenization method. The general expressions are also valid for plate laminated 
composites, i.e., a plate bounded by traction-free plane surfaces. Numerical calculations are shown to illustrate the rele-
vance of these results in transducer biomedical imaging and hydrophone applications. 
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1 Introduction 
 
It is well known that study of stratified media leads to 
exact formulae for their effective coefficients.  See, for 
instance, in recent references [1] and [3]. In ref. [4] the 
asymptotic homogenization method is applied to find 
general formulae of two-layered thermopiezoelectric 
composites. The asymptotic homogenization model is 
also applied in ref. [2] to obtain general formulae for 
overall properties of n-layered piezoelectric composites 
by a previous generalization of the results published in 
Chapter 5 of ref [8] for the purely elastic case. In Chap-
ter 9 of ref [6] an extensive revision of several results in 

the prediction of effective properties of layered struc-
tures elastic, thermoelastic, thermoelectric and piezo-
electric is presented, and other important references in 
this area are quoted there. In ref. [9] the problem of ho-
mogenization of a thermopiezoelectric composite is also 
mathematically treated by the method of two-scale as-
ymptotic expansions. The theoretical contribution of this 
paper is the generalization of the formulae in ref [4] to 
the case of multilayered thermopiezolectric composites. 
Following the model of ref. [5] it is also proved that the 
generalized formulae are also valid for the not necessar-
ily regular structures. From a practical point of a view 
the relevance of this effort is shown by means of exam-
ples of three-layered composites useful either in bio-
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medical imaging or hydrophone applications. The de-
pendence of the overall properties of a composite as 
function of the individual physical properties and of the 
specific application of interest is also illustrated in these 
numerical experiments. In several cases the improve-
ment of global characteristics is remarkable for the case 
of three-layered composites in respect to their binary 
counterparts. 

In section 2, the statement of the problem is given for a 
periodic multilayered thermopiezoelectric structure, and 
the local problems, which are required to be solved, are 
formulated using a compact notation. A simple deriva-
tion of the corresponding effective formulae is described. 
Such formulae are exactly those reported in ref. [4] for 
the two-layered thermopiezolectric composite. In section 
3 deals with useful numerical calculations to optimize 
ultrasonic transducer applications. In section 4 some 
concluding remarks are summarized. 

 
2 Effective coefficients and local prob-
lems 

Let 3ℜ⊂Ω  be a bounded laminated thermopiezolec-
tric composite made of cells which are periodically dis-

tributed along 3Ox axis. Each cell may be made of any 

finite number of thermopiezolectric layers. The axis of 
material symmetry of each layer are parallel to each 

other and the 3x -axis is perpendicular to the layering. 

The tensors of elastic, thermoelastic, piezoelectric, di-
electric and pyroelectric modules are denoted by 

ijijkijijkl gc ∈,,,γ  and iλ  respectively. Throughout this 

paper Latin indices take values 1, 2 and 3; and Greek 
indices run from 1 to 4. The summation convention is 
understood, but it is taken only over repeated lower case 

indices. Next, ijk  stands for the heat conductivity 

and
0T

Ce=β ; 
eC  is the specific heat at constant strain per 

unit volume and 0T  is the reference (absolute) tempera-

ture. Let the material functions be Y-periodic functions, 
where { }10: 33 ≤≤= yyY  is the unit periodic cell. 

Here 
α

3
3

x
y =  is the local (fast) coordinate and 

L

l
=α  is 

the geometrical small parameter, which represents the 
radio between the characteristic length l  of the periodic 
cellY , and the characteristic length L  of the whole 
domain Ω . 

By using a compact notation, introduced in ref. [4], the 

effective coefficients can be written as follows:  

3
3 dy

d
CCC γµν

αβγαβµναβµν

χ
+=            (1) 

3
3 dy

d
KKK j

iijij

Θ
+=                (2) 

where     
ijmn ijmn 4jmn jmn 4j4n

jn ij44 ij 4j44 j

C º c ,C º g ,C º

- Î ,C º -γ ,C º λ
 

and β≡4444C . The angular brackets define the average 

per unit length of the relevant quantity over the unit cell, 

that is, ,)(
1

33∫=
Y

dyyF
Y

F  where Y  denotes the 

length of the  unit periodic cell .Y  For simplicity, the 

following notation will be used: ∫
1

3 3

0

F = F(y )dy . Note 

that the local auxiliary functions 
γµν χ  and jΘ  pre-

indexes µν  and j  use to relate them to certain differ-

ential equations L below are solutions of the following 
local problems: 

Problem Lµν
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γµν χ  being Y-periodic with 

0=γµν χ  such that 
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Problem Lj : find Θj  being Y-periodic with 0=Θj
 

such that 
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The above problems are solved using the procedure 
appear in Chapter 5 of ref. [8], for the purely elastic 
case; obtaining the following expressions for derivatives 
of the local functions: 
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          (5,6) 

In (5) and below, the exponent -1 denotes the indicated 
component of the 4x4 inverse matrix.  Finally, substitut-
ing (5), (6) into (1), (2) respectively, the effective coeffi-
cients take the simple form 

αβµν αβµν

-1-1 -1 -1
αβγ3 γ3δ3 δ3ρ3 ρ3θ3 θ3µν

-1
αβγ3 γ3δ3 δ3µν

C = C

+ C C C C C

- C C C

,            (7) 

-1-1 -1 -1
ij ij i3 33 33 33 3j

-1
i3 33 3j

K = K + K K K K K

- K K K
.       (8) 
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It is interesting to point out that these formulae are also 
valid for a finite laminate not necessarily periodic, that 
is, a plate. The expressions of the local problems and 
effective coefficients are the same in both cases, with the 
particularity that for the non-periodic problem, the local 
functions take the value zero on opposed sides of the unit 
cell Y 5. These boundary conditions are equivalent to the 
periodicity conditions for the present one-dimensional 
case. 

After some algebraic manipulations it is verified that 
the effective constants in (7) and (8), for the particular 
case of a binary medium, coincide exactly with formulae 
(17) and (18) reported in ref. [4]. 

In the engineering literature this kind of layer distribu-

tion ( 3yy ≡ ) is known as “connectivity in series” (see 

for instance Figure 1) and the case corresponding to 

1yy ≡  (or 2y ) is called “connectivity in parallel”, see 

for instance ref. [7].  From (7) and (8), interchanging in 
these expressions the indices 3 and 2 (or 1), the corre-
sponding formulae for parallel connectivity case can be 
obtained. 

 
3 Improvement of physical characteris-
tics 
 
In order to show the importance of these results, we will 
consider the case of parallel connectivity where each 
periodic cell consists of three different homogenous 
phases: a polymer phase (medium 1) which is piezoelec-
trically inactive or active, the medium 2 is a TLZ5 pie-
zoelectric ceramic, and the medium 3 is a VDF/TrFE 
piezoelectrically active polymer. Two applications of 
these composite materials will be shown: one of them is 
relevant to passive detectors subjected to hydrostatic 
conditions (such as hydrophones) and the other one is 
related to transducers for biomedical imaging applica-
tions. The basic effective coefficients for computing the 
main physical parameters for both applications can be 
derived from (7) (replacing 3 by 2, and assuming that 
each phase belongs to the class 6mm). They are finally 
given by the following formulae: 
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where ∑ denotes the summation for i  from 1 to 3, 

YYii =λ  is the volumetric fraction of phase i  

(which represents the ratio between the length ,iY  of 

the region occupied by phase i , and the length Y  of 

the periodic unit cell Y ), and ρ  is the mass density.  

 
 

Figure 1: Layer distribution “connectivity in series” 
 
The usual notation of adjacent indices: 
( )3)33(,2)22(,1)11( →→→  has been used to ex-

press briefly the elastic, piezoelectric and dielectric coef-
ficients. 

Using the effective coefficients (9) it is possible to cal-
culate the components of averaged tensors of elastic 

compliances
E
ijS , piezomoduli mid , elastic rigidity 
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D
mnc , and permittivity 

T
mn∈ , by using the following for-

mulae 

( )
∆

∆
−=

+ ijjiE
ijS 1 ,      

E
jimjmi Sgd = , 

12 −

∈+= pnmpmn
D
mn gcc ,     pnmpmn

T
mn gd+∈=∈ , 

where, ∆ is the determinant of the ijc  matrix and ij∆  is 

the minor obtained by excluding the ith row and jth 
column. 

The use composite materials for hydrophone applica-
tions is based on the idea of decoupling the piezoelectric 

3133 ,dd  and 32d  coefficients and lowering the permit-

tivity
T
33∈ , these composites have produce some remark-

able improvements in the hydrostatic 

( )333231 dddd h ++=  and ( )( )T
hh dg 330 ∈∈=  

coefficients, where 0∈  denotes the permittivity of free 

space. The principle of designing a composite material 

for hydrophone applications is maintain 33d  as large as 

possible and reduce 3231 ,dd  and the dielectric constant 
T
33∈  resulting in an enhanced value of hh gd . 

Figure 2 shows the variation of  hh gd , the figure of 

merit, versus volume fraction of piezoelectric ceramic 

( )2λ  for four different three-layered composites, in 

parallel connection, made of a polymer (medium 1), 
TLZ5 (ceramic medium, 2) and VDF/TrFE (piezoelec-
tric polymer, medium 3). The medium 1 is the only one 
varies for each composite. For composite 1, Eccothane 
(solid line) is used; and for composite 4, the medium 1 is 
the VDF/TrFE piezoelectric polymer (doted line) (in this 
case it becomes a two-layered composite). The material 
parameters used in the calculation are listed in Table 1. 

For the calculations the value of 8.01 =λ  is fixed. As 

it can be observed in Figure 1, the optimum percentage 

of TLZ5 to maximize the value of hh gd  should be 

about eight percent of TLZ5 for the best combination 
which is composite 2. Figure 3 illustrates the variation of 
thickness electromechanical coupling factor  









−=

D
t ccK 33331  

versus acoustic impedance ( )DcZ 33ρ=  for the same 

four composites involved in Figure 1. The objective now 
is to show which is the best combination in the design of 
transducer for biomedical imaging applications. In this 
case the piezoelectric material requires of a high elec-
tromechanical coupling coefficient (= 0.6 to 0.7) for high 
sensitivity; and a low acoustic impedance (Z < 7.5 
Mrayl) to minimize reflection losses at the interfaces. 

The optimum material can be obtained by adjusting the 
volume fraction of ceramic piezoelectric. As the volume 
fraction decreases the acoustic impedance also dimin-
ished which eventually causes deterioration in the elec-
tromechanical coupling.  
 

 
Figure 2.  Figure of merit for hydrophone applications in 
three-layered piezocomposites, in parallel connection, between 
the products  

hh gd  versus volume fraction of piezoelectric 

ceramic TLZ-5. 
 

 
Figure 3.  Trade-off between high electromechanical 
coupling and low acoustic impedance   in three layered 
piezocomposites, in parallel connection, made from 
TLZ-5, VDF/TrFE and four different polymers. 
 
A trade-off then must be made between minimizing the 
impedance and maximizing the coupling, as illustrated in 
this Figure the composite 1 reflects the best combination 
of materials for this application.  

 

4 Concluding remarks 
 

Analytical expressions of the effective coefficients for 
thermopiezoelectric layered composites with any finite 
number of layers are derived based on the asymptotic 
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homogenization method (equations (7) and (8)). These 
general formulae are applied in order to calculate the 
overall thermopiezoelectric properties for layered media 
composed of layers with 6mm symmetry.  

 
Table I 

Material parameters used in the numerical exam-
ples; 2212

0 10.854.8 NmC−=∈  is the free space 

permittivity. 
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)(11 GPac  126 8.5 5.46 8.0 1.64 

)(12 GPac  79.5 3.6 2.94 4.4 1.57 

)(13 GPac  84.1 3.6 2.94 4.4 1.57 

)(33 GPac  109 9.9 5.46 8.0 1.64 

( )2
31 mCg  -6.5 0.008 0 0 0 

( )2
33 mCg  24.8 -0.29 0 0 0 

033 ∈∈  1813 6.0 7.0 4.0 5.4 

( )3mkgρ  7898 1880 1170 1150 1130 

 
Two examples of applications for the design of im-

proved ultrasonic devices (hydrophones and biomedical 
imaging) are presented. The basic effective formulae for 
these applications (equations (9)) are of very easy com-
putation. These examples illustrates that three layered 
composites can possess improved properties than two 
layered ones. The dependence of the overall properties 

of a composite relative to the physical characteristics of 
the individual phases and the predetermined application 
is also shown in these examples. For instance the combi-
nation Eccothane-TLZ5-VDF/TrFE is a very good can-
didate for biomedical imaging but is not recommendable 
for hydrophone applications. 
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