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SPIN-CROSSOVER IN MOLECULAR CRYSTALS: AN
ELECTRON-COUPLED LOCAL VIBRATIONS MODEL
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A model of eg electrons at octahedral sites coupled to local
vibrational “breathing” modes interacting with its near neighbors
is proposed to describe spin-crossover (SCO) in molecular
crystals. Decoupling vibrations leads to an effective electron
Hamiltonian with renormalized site energies, where ferromagnetic
and antiferromagnetic, short range and long range electron-electron
interactions arise in a natural way. An exact analytic expression
for the free energy functional is derived. A phase diagram for
homogenous phases, describing the basic phenomenology of SCO
is obtained and the transition temperatures are expressed in
terms of model parameters. Under appropriate conditions, two-step
transitions are found to take place for systems with both, short
range and long range interactions. Stability with respect to spatial
fluctuations is discussed.

Para describir la transición de espı́n (SCO) en cristales moleculares
se propone un modelo de electrones eg acoplados a modos
de vibración locales “respiratorios” que interactúan con sus
vecinos próximos. Al desacoplar las vibraciones resulta un
Hamiltoniano electrónico efectivo con energı́as renormalizadas,
donde las interacciones electrón-electrón ferromagnéticas y
anti-ferromagnéticas, de corto y de largo alcance aparecen de
modo natural. Se deriva una expresión analı́tica exacta para el
funcional de energı́a libre. Se obtiene un diagrama de fases
homogéneas que describe la fenomenologı́a básica de la transición
de espı́n y se calculan las temperaturas de transición en función
de los parámetros del modelo. Bajo condiciones apropiadas, las
transiciones en dos pasos resultan posibles tanto en sistemas
con interacciones de corto como de largo alcance. Se discute la
estabilidad respecto a las fluctuaciones espaciales.

PACS: Statistical mechanics of model systems (Mecánica estadı́stica de sistemas modelo), 64.60 De; Spin crossover (Cruce de spin),
75.30. Wx; Molecular magnetism (Magnetismo molecular), 75.50. Xx

I. INTRODUCTION

Spin-crossover (SCO) is the transition between a low spin
(LS) and a high spin (HS) state of a metal ion with
d4-d7 electronic configuration in an octahedral ligand field,
under the action of external stimuli. The phenomenon has
a wide presence in nature, especially in the case of the
transition of FeII complexes between t2g

6 (S=0) and t4
2ge2

g (S=2)
configurations, which is responsible for oxygen transport in
hemoglobin and probably for the change under pressure
of ferropericlase in the Earth´s mantle. In solids, SCO can
be found in many transition metal oxides, organometallic
complexes, inorganic salts or organic radicals and has a
cooperative nature, frequently leading to abrupt changes
of macroscopic physical properties and hysteresis. A clear
introduction and a broad perspective of the field can be found
in the monographs [1] and [2].

The most common way of monitoring spin transitions is a
plot of the HS fraction versus temperature, conventionally
obtained from magnetic measurements or Mössbauer
spectroscopy [3]. These spin transitions curves can be
gradual, abrupt, hysteretic, two-steps or incomplete,
depending on the degree of cooperativity of the spin
system [4]. Complementary information about changes in
structure and physical properties during the spin transition is
obtained with the aid of many other experimental techniques.

Materials with abrupt SCO near room temperature and
wide hysteresis loops are the focus of research in the field,
because of potential applications in molecular electronics
and spintronics [5]. The big theoretical challenge is to
predict the spin transition curve for a specific material,
including the transition temperatures and the width of
the hysteresis loops. Macroscopic and semi-microscopic
approaches, based in Landau theory of phase transitions
and Ising-like models have contributed to the progressive
understanding of SCO and related phenomena [6, 7]. A
complete microscopic description requires the consideration
of three basic elements: i) the spin and vibrational states
of individual octahedral complexes, ii) the interactions
between them leading to cooperative effects and iii) their
connection to external factors like temperature, hydrostatic
pressure, light irradiation, magnetic field and the chemical
environment. Given the diverse nature of SCO compounds,
it is unlikely that a single theory could account for all
different behaviors. For example, in oxides cooperativity is
attributed to electronic exchange and in molecular crystals
to electron-phonon coupling [8]. Recent contributions [9]
emphasize the key importance of strong coupling between
eg electrons and molecular fully symmetric (“breathing”)
vibration modes (instead of Jahn-Teller vibrations as
previously proposed [10,11]) in determining the local energy
pattern of SCO in molecular crystals. On the other hand, the
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responsibility for cooperative phase transitions is attributed
to the interaction with acoustic phonons propagating along
the crystal. This difference had already been considered in
phenomenological approaches through the introduction of
two different elastic constants [12]. In reference [9] a detailed
Hamiltonian containing the interactions between electrons,
acoustic phonons and local fully symmetric vibrations
has been proposed. After explicit shift transformation of
phonon operators they are decoupled, leading to an effective,
phonon mediated, electron-electron interaction, additional
to the quadratic interaction with local vibrational modes.
The approach has been generalized to SCO in binuclear
compounds [13]. Unfortunately, such a detailed description
requires drastic approximations (mean field, simple phonon
models) to evaluate the HS fraction as a function of
temperature. This paper presents a theoretical approach
to SCO in mononuclear molecular crystals containing FeII

ions, based in the same idea of reference [9], but in a
simplified version. Instead of coupling to acoustic phonons,
a simple effective interaction between neighboring local
breathing modes is considered. Only electrons in eg states
are linearly coupled to vibrations, so there is no need for
two breathing modes with different vibrational frequencies
and coupling parameters. Next, decoupling breathing modes
with successive canonical transformations leads to a lattice
model where short range and long range ferromagnetic
and antiferromagnetic interactions arise in a natural way.
A general discussion of the phase diagram predicted
by this model is possible without appeal to additional
approximations.

II. MODEL

Consider a d-dimensional periodic array of (i = 1, . . . ,N)
mono-nuclear metal complexes, each containing an ion FeII

in an octahedral site surrounded by non-magnetic ligands.
The number of electrons occupying eg states at ion “i” will
be designed by ni. Since the charge density distribution
of the anti-bonding eg states is more localized near their
octahedral neighbors, these electrons, and not those at states
t2g, are strongly coupled to a local “breathing” vibration
mode described by operators â+

i , âi. Breathing modes
at neighboring sites interact through acoustic phonons.
The effective Hamiltonian for this electron-local vibrations
system will be:

Ĥ =

N∑
i=1

Ĥi +
∑
〈i, j〉

V̂i j, (1)

Ĥi =εni +
(
â+

i âi +
1
2

)
− αni(â+

i + âi), (2)

V̂i j = −
λ
4

(â+
i + âi)(â+

j + â j). (3)

In these expressions ε > 0 is the excitation energy per
eg electron, obtained by subtracting the splitting energy ∆
between t2g and eg states and the pairing energy P in t2g
states, while α, γ are coupling parameters. The phonon
energy ~ω of the local breathing mode when the ion is in

the HS state has been taken equal to one. This energy, in
the order of 102 cm−1, is too low to produce real transitions
between different electron states (ε ∼ 103 cm−1). Coupling
to local modes induces virtual transitions that renormalize
electron energies, give rise to an effective electron-electron
interaction and shift atomic positions (see below). To clarify
the assumptions usually involved in this kind of model and to
give the possibility to go beyond them, a detailed derivation
has been included in the Supplementary Information [SA]
accompanying this paper. The interaction Hamiltonian V̂i j is
the simplest approximation to an effective inter-site coupling
which could result from averaging over degrees of freedom
(acoustical phonons) connecting local breathing modes at
neighboring sites [9].

Breathing modes can be decoupled by canonical
transformations of their creation and annihilation operators,
leading to a system with an effective electron-electron
interaction and independent dispersive phonons [SB]:

Ĥ =Ĥe + Ĥph, (4)

Ĥe =

N∑
i=1

(εni − α
2n2

i ) − α2λ
∑
〈i, j〉

nin j −
∑

i, j

Ui jnin j, (5)

Ĥph =
∑
~q

√
| 1 − λs(~q) |

(
ˆ̃a+
~q

ˆ̃a~q +
1
2

)
(6)

Ui j =
a2λ2

N

∑
q

s2(~q)
1 − λs(~q)

ei~q·(~Ri−~R j), (7)

s(~q) =
1
2

z∑
j(i)=1

ei~q·(~Ri−~R j). (8)

In the above summations, symbols j(i) and 〈i, j〉 denote
near-neighboring sites j for fixed i and pairs of neighbors
respectively. The electron configuration is defined by {ni}.
The wave vector ~q takes N values in the first Brillouin zone
of the periodic structure formed by the FeII ions at the
octahedral sites. Inversion symmetry has been assumed, so
that s(~q) = s(−~q).

For weak inter-site coupling (λz < 2) the quantity 1−λs(~q) is
positive and no soft modes are generated by the interaction.
The average shift in equilibrium atomic positions due to a
change in spin –state is proportional to [SA]:

〈âi + â+
i 〉

2
= α〈ni〉 +

αλ
N

∑
j

〈n j〉
∑
~q

s(~q)
1 − λs(~q)

ei~q·(~Ri−~R j).

According to 5, the renormalized energy ε∗ of eg electron
states and the effective in-site interaction u∗ between them
are given by:

ε∗ = ε − α2
−
α2λ2

N

∑
~q

s2(~q)
1 − λs(~q)

ei~q·(~Ri−~R j),

u∗ = −α2
−
α2λ2

N

∑
~q

s2(~q)
1 − λs(~q)

ei~q·(~Ri−~R j).
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Coupling to phonon modes lowers the energy of one electron
states (ε∗ < ε) and leads to attractive in-site interaction
between them (u∗ < 0) at least for weak inter-site coupling
(λz < 2). This favors local high spin states at finite
temperatures. The interaction −α2λ between eg electrons
at neighboring sites is also attractive and leads to the
collectivization of HS states.

On the other hand, the effective interaction Ui j between eg
electrons at arbitrary different sites is also attractive and
short ranged for λz < 2, oscillating and long ranged for
intermediate coupling ( 2 < λz < 4) and repulsive but short
ranged in the strong coupling case (λz > 4). For a cubic array
with lattice parameter equal to one, in the long distance limit
(q→ 0) one has:

Ui j =
α2λ2z3

4 − λz
1
N

∑
q

ei~q(~Ri)−~R j

q2 + κ2 ∼
1

4 − λz
e−κRi j

Ri j
,

κ2 =
2(2 − λz)

4 − λz
.

The statistical sum for the electron system is:

Z =
∑
{ni}

exp
{
−

He{ni}

KT

} N∏
i=1

gni . (9)

To incorporate into the Hamiltonian the degeneracy gni

of local states with ni electrons eg at site i, a procedure
introduced in [14] for ni = 0, 1 has been generalized to the
case ni = 0, 1, 2 [SC]:

H∗e{ni} = He{ni} − kT
N∑

i=1

gni ,

N∑
i=1

ln gni = N ln g0 +
1
2

ln

 g4
1

g3
0g2

 N∑
i=1

ni −
1
2

ln

 g2
1

g2g0

 N∑
i=1

n2
i .

(10)

To explore the phase diagram let´s introduce a free energy
functional

ϕ[{ni},T] =
H∗e{ni}

N
.

In the thermodynamic limit, the minimum of ϕ[{ni},T] is the
exact free energy per site:

f (T) ≡ − lı́m
N→∞

kT
N

ln
∑
{ni}

exp
{
−

He{ni}

KT

}
= lı́m

N→∞
mı́nϕ[{ni},T]

The free energy functional can be also expressed in terms of
the Fourier components:

ni =
∑

q

ñ(~q)ei~q·~Ri ; ñ(~q) =
1
N

∑
i

ni(~q)ei~q·~Ri .

Then, up to an additive constant:

ϕ[{ñ(~q)},T] = ε1n − ε2n2
−

∑
q,0

ε2(~q)|ñ(~q)|2, (11)

ε1 = ε −
kT
2

ln

 g4
1

g3
0g2

 ,
ε2(~q) =

α2

1 − λs(~q)
−

kT
2

ln

 g2
1

g2g0

 ,
n = ñ(0); ε2 = ε2(0). (12)

The first two terms of 11 give the free energy of a homogenous
phase with average spin n and the last one is the contribution
of spatial fluctuations.

III. PHASE DIAGRAM

For homogenous phases ni = n(0, 1, 2), and the free energy
functional 11 reduces to:

ϕ[{ni = n},T] = εn = ε1n − ε2n2. (13)

The phase diagram is shown in figure 1. Low (LS),
intermediate (IS) and high spin (HS) phases correspond to
regions in the plane ε2 − ε1 where the absolute minimum
of ϕn is obtained for n = 0, 1, 2 respectively. A point on the
equilibrium lines correspond to a sequence of states where
two phases coexist. The triple point can be reached only
under the conditions ε1 = ε2 = 0.

At T = 0 K only LS and HS phases can exist. The ground
state is in the first (third) quadrant for λz < 2 (λz > 2),
corresponding to a LS phase when ε > (4α2)/(2 − λz) and to
a HS phase in the opposite case. As T increases at constant
pressure, parameters ε1 and ε2 decrease along the isobars:

ε1 = ε +
4 ln g1 − 3 ln g0 − ln g2

2 ln g1 − ln g0 − ln g2

(
ε2 −

2α2

2 − λz

)
. (14)

The slope of these straight lines depends only of the
degeneracies of local states. Temperature induced first order
transitions take place when the isobars 1 cross the phase
equilibrium lines, as indicated in figure 1 for g0 = 1; g1 = 9;
g2 = 15.

When the ground state is HS (isobar-a in the phase diagram),
there are no temperature induced phase transitions. For the
LS ground state in the first quadrant, both one-step (isobar-b))
and two-step transitions (isobar-c) can take place, the last one
under the condition:

ε >
2α2

2 − λz
4 ln g1 − 3 ln g0 − ln g2

2 ln g1 − ln g0 − ln g2
.
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Figure 1. Phase diagram in the plane ε2 − ε1, showing high spin (HS),
intermediate spin (IS) and low spin (LS) phases, the equilibrium curves (red
lines) and the possible positions of the ground state (blue points). Arrows
(a)-(d) indicate the evolution of phase points as temperature increases at
constant pressure for g0 = 1; g1 = 9; g2 = 15 and different positions of the
ground state (small circles). The broken arrow qualitatively represent the
evolution of the phase point as pressure increases at constant temperature.

When long-range interactions are present (4 > λz >
2), the LS ground state is in the second quadrant
and temperature-induced two-step transitions take place
(isobar-d). This condition is sufficient but not necessary:
two-step transitions can occur also in the absence of long
range interactions (isobar-c).

Within this model, the occurrence of a IS homogeneous phase
and two-steps transitions relies on the existence of excited
states t5

2ge1
g with total spin S = 1 in an isolated complex [SA].

For an infinite system of coupled complexes, the phase with
all Fe(II) atoms in S = 1 states will never represent the ground
state, but it could be stabilized at non-zero temperature by
the combined effect of interactions and entropy (it has larger
degeneracy than the LS state). As shown in the diagram, this
phase has the lower free energy for 0 > ε2 > ε1 > 3ε2. If the
S = 1 local states are not considered, only HS and LS phases
arise, separated by the straight line ϕ2 = 0.

When only ni = 0, 2 values are admitted, the effective
electron Hamiltonian 10 can be reduced to an Ising model
in the pseudo spin variables σi = ni − 1, with a temperature
dependent external field h(T). The ferromagnetic Ising model
with short range interactions has a first order phase transition
between spin up and a spin down phases only for h = 0
and T < Tc with Tc the Curie temperature. These two
conditions set limits to the existence of the LS-HS transition
and define its temperature T20 in terms of model parameters.
However, the jump of the order parameter ∆n(T20) < 2 is
different from the ∆n ≈ 2 observed in SCO systems. On
the other hand, for the Ising model with near-neighbors
interaction, the IS phase could only result from alternating
spin order induced by antiferromagnetic coupling and could
not coexist in the same material with the HS phase, which
needs ferromagnetic coupling. So, Ising models with short
range interactions do not describe the basic phenomenology
of SCO. In reference [14] an Ising model with short and
long range interactions, the latter treated in mean field

approximation, has been considered to discuss two-steps
transitions in one-dimensional SCO chains.

The HS↔LS, HS↔IS, IS↔LS transition temperatures T20, T21,
T10 are respectively:

kT20 ln
(

g2

g0

)1/2

= ε −
4α2

2 − λz

, kT21 ln
(

g2

g1

)1/2

= ε −
6α2

2 − λz
, (15)

kT10 ln
(

g1

g0

)1/2

= ε −
42α2

2 − λz
.

For ε = 1600 cm−1, ~ω = 180 cm−1 and taking α = 1; λ = 0.25;
z = 6 a reasonable HS↔LS transition temperature T20 = 170
K is obtained from 15.

As previously stated, all energy parameters have been
expressed in units of the local breathing mode energy ~ω.
In ordinary units one has:

ε2 =
2α2~ω
2 − λz

−
kT
2

ln

 g2
1

g2g0

 .
In the framework of this simple modelα, λ, ω, ε are intuitively
expected to increase with pressure. Then, parameters ε1 and
ε2 are also growing functions of pressure. On the other hand,
combining 13 with general thermodynamics:(
∂ε1

∂p

)
T

n −
(
∂ε2

∂p

)
T

n2 =

(
∂ f
∂p

)
T
≥ 0.

Consequently, for n = 1, 2 as pressure increases at constant
temperature ε1 grows faster than ε2 and the system always
approaches lower spin phases. The qualitative evolution
of the phase point as been represented in the phase
diagram with a discontinuous arrow. Determining the exact
equation of these isotherms requires the specification of
the (unknown in this description) pressure dependence of
parameters ε1 and ε2 . Increasing pressure increases transition
temperatures. Pressure induced transitions HS↔LS could
take place for systems with a HS ground state, which
do not experience temperature induced transitions, as
experimental evidence shows [1] and the phase diagram
illustrates. Dimensionality enters the phase diagram through
the number of near neighbors z. A larger z is equivalent to a
stronger coupling between neighboring breathing modes and
favors HS states. Consider, for example, layered materials
obtained by assembling planes of coupled octahedral
complexes separated by organic linkers. As inter-plane
coupling is weak, the ground state moves to the LS region
ε > (4α2~ω)/(2 − λz) and the quasi 2D systems(z = 4) can
show SCO even when their 3D counterpart (z = 6 without
the organic linker) is always in the HS state. This behavior
has been observed in layered Fe nitroprussides [15]. If there is
SCO in the 3D system, it is expected to take place at a higher
temperature in the layered version.

The phase diagram previously presented could be modified
by considering non-homogeneous phases, which means
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considering the contribution of the last term in expression
11 for the free energy functional. According to 11 and 12, one
has ε2(~q) < ε2 < 0 for λz > 2. In this case, spatial fluctuations
always increase the free energy and disappear from the
minimum configuration. This means that for phase points
in the third and fourth quadrants local order is preserved
without spatial fluctuations across the crystal.

On the contrary, in the weak coupling case, when ε2 >
0 so that ε2(~q) > 0 , at least for small q, long range
fluctuations lower the free energy and could destroy the
homogeneous phase. Fortunately, the free energy functional
with fluctuations included has a lower bound given by:

ϕ =ϕn −
∑
~q,0

ε2(~q)|ñ(~q)|2 > ϕn − ε2

∑
~q,0

|ñ(~q)|2

=ϕn − ε2

 1
N

∑
i

n2
i − n2

 ≥ ε1n − 4ε2.

It follows that:

mı́n(ε1n − 4ε2) ≤ mı́n(ϕ) ≤ mı́n(ϕn). (16)

In the fourth quadrant of the phase diagram (ε1 < 0; ε2 > 0)
the only possible minimum of the free energy functional
consistent with 16 is obtained for n = 2 and ε = ε2, which
corresponds to a stable high temperature HS phase for:

T =
2ε

k(4 ln g1 − 3 ln g0 − ln g2

As temperature decreases below this value and the phase
point moves to the first quadrant (ε1 > 0; ε2 > 0), the
minimum of the free energy functional can be reached for
average spin values different from those corresponding to
homogeneous phases with n = 0, 2, as shown in figure 2.

.
Figure 2. In the first quadrant of the phase diagram (ε1 > 0; ε2 > 0), the
minimum of the Landau free energy ϕ lies in the shadowed region between
the straight line ε1n − 4ε2 and the curve ϕn = ε1n − ε2n2 (both in red) (a)
T > T20; (b) T < T20

In the HS phase (figure 2a), configurations with different
average spin and nearly equal free energy are unstable, which
combined with large relaxation times, needed to change
the spin state of a macroscopic fraction of the ions in the

sample, can lead to hysteresis. Notice that for the system in
the state n=0 there is a free energy barrier to transit to the
equilibrium state n = 2. At temperatures lower than the mean
field transition temperature T20 (figure 2b) the minimum free
energy can be reached for any average spin value n ≤ (4ε2)/ε1
which, again combined with large relaxation times, can also
lead to hysteresis and incomplete transitions at very low
temperatures. Notice now for the system with n = 2 there
is a free energy barrier to transit to the equilibrium value
n = 0. The description of these phenomena requires full
consideration of spin fluctuations and can be approached
with the aid of Monte Carlo simulations.

The model presented in this paper could also be applied
to discuss SCO in nanoparticles [16]. However, it must be
emphasized that the minimum of the free energy functional
corresponds to the exact free energy per site only in
the thermodynamic limit. For small samples, fluctuations
with respect to that minimum and boundary conditions
play a very important role and should be considered.
Model extensions to evaluate lattice entropy changes during
transitions, an important experimental fingerprint of SCO
not considered here, are also possible. Local fields describing
the interaction between spin centers in binuclear SCO
compounds and other effects of the chemical environment
can be also incorporated to the model.

IV. CONCLUSIONS

A simple model of eg electrons at octahedral sites interacting
with local breathing modes coupled to its near neighbors,
accounts for the basic phenomenology of spin crossover
in molecular crystals formed with Fe (II) complexes. The
effective electron-electron interaction can be short or long
ranged, attractive or repulsive, depending on inter-site
coupling and site connectivity. An exact analytic expression
for the free energy functional has been derived. A diagram
has been obtained for homogeneous phases and the
transition temperatures have been calculated in terms of
model parameters. Two-step transitions are possible for
systems with both, short range and long range interactions.
Instability with respect to spatial fluctuations appears near
the HS↔LS transition, which combined with large relaxation
times can lead to hysteresis and incomplete transitions. .

SUPPLEMENTARY INFORMATION

Details of long demonstrations contained in supplements SA,
SB and SC are freely available on-line.
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