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Se presenta la caracterización estructural y microestructural de
aleaciones de aluminio - titanio (AlxTi3-x, 0.05 ≤ x ≤ 0.20)
por medio de la técnica de difracción de rayos-X (DRX). El
análisis mostró la ocurrencia de una transición de fase orden –
desorden en el rango de composición estudiado. La presencia
de una fase minoritaria fcc en la matriz hcp de la aleación
AlxTi3-xmostró evidencia de la presencia de defectos de apilado,
cuya probabilidad de ocurrencia depende de la composición quı́mica
y la distancia entre capas atómicas (parámetro de orden). El
análisis microestructural usando los métodos de Warren-Averbach
y Williamson-Hall mostró que unadisminución del contenido de
Al, no solo disminuye la probabilidad de ocurrencia de defectos
planares sino que propicia una disminución del tamaño promedio de
cristalitas y aun aumento del valor medio de la microdeformación
no uniforme en la aleación. Los defectos de deformación (α)
predominan en este tipo de aleación.

The structural and microstructural characterization by means of
X-ray diffraction (XRD) of the aluminum-titanium alloys (AlxTi3-x,
0.05 ≤ x ≤ 0.20) is presented. The analysis showed the
occurrence of an order-disorder phase transition in the studied
compositional range. The presence of a minor fcc phase within the
hcp matrix of the AlxTi3-xalloy showed evidence of the presence of
stacking faults. The probability of occurrence of this type of defect
depends on the chemical composition and on the distance between
atomic layers (order parameter). The microstructural analysis using
the Warren-Averbach and Williamson-Hall methods shows that
a decrease of Al content not only decreases the probability of
occurrence of planar defects but also leads to a decrease in the
average crystallite size and to an increase of the average non
uniform microstrain value in the alloy. Deformation defects (α)
predominate in this type of alloy.

PACS: Keywords. Crystal structure alloys (Estructura ristalina de aleaciones), 61.66.Dk; X-ray diffraction (Difracción de rayos X), 61.05.cp;
microstructure (Microestruuctura), 61.72.-y; Crystal defects (Defectos cristalinos), 61.72.-y

I. INTRODUCTION

Aluminum – Titanium (AlTi) alloys have been continuously
studied for many years due to their high impact in
the industry. Mechanical alloying processes, doping with
other elements, microstructure modification through assisted
techniques, and other processes have provided ways to
modify properties such as hardness, resistance to high
temperatures, oxidation, corrosion, binding properties, etc.
of Ti-base Al alloys [1–8]. All the reported studies have
as a common feature: the structural and microstructural
characterization of the alloys using, as fundamental
techniques, X-ray diffraction (XRD) and electron microscopy.

The microstructure of these materials is determined by a
complex distribution of structural defects, where planar
defects (stacking faults) play an important role in the physical
and mechanical properties of AlTi alloys. The quantitative
determination of the probability of occurrence of this type of
defect by different techniques and methods has been the object
of study in a significant number of contributions [1], [5–8].

Reports on microstructural analysis in the AlxTi3-xsystem [6–8]
show that the used procedure differs from the methodology

proposed in the Warren-Averbach (WA) method [9]. Instead
of choosing reflections of different orders to separate the
Fourier coefficients representing coherent domain size and
microstrains, reflections not affected by planar defects are
selected to determine both coefficients, even though the
selected reflections are not perpendicular to the same
cristal column (same crystallographic direction). In the cited
references, reflections affected by planar defects are then used
to determine the coefficients of what is usually called the
effective coherent domain size, that is, the one that also taken
into account the effect of this type of defect. This last group
of reflections is not perpendicular to the same crystal column
either, as the WA method requires.

The referred procedure can lead to incorrect results in the
determination of the probabilities of occurrence of planar
defects and, ultimately, uncertainties in the determination of
coherent domain sizes and microstrains in the crystal structure
of the alloy.

The analysis presented in this work is framed following the
ideas of the WA method, at least in those cases where it is
possible. An alternative method (Willianson - Hall) [10] is
applied for the case where reflections of different orders are
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not available. Additionally, a compositional phase transition
in the studied composition range is qualitatively analyzed.

II. EXPERIMENTAL AND METHODS

II.1. Experimental procedure

Nominal AlxTi3-xcompositions with, 0.05 ≤ x ≤ 0.20 in
the Ti-rich region of the Al-Ti binary phase diagram were
prepared [11, 12]. The starting elements were high purity Al
and Ti powders (99.9 %). The alloy ingots were prepared by a
standard arc melting method. The ingots were hot extruded at
800◦C for 48 h to ensure homogeneity and then air-cooled. Part
of the samples were reduced to powder, sieved to particles size
less than 1 µm and subjected to a heat treatment at 100◦C to
reduce stresses.

The powder XRD patterns were recorded at room temperature
in an X-Pert Panalytical diffractometer in a range 2θ = 15◦−90◦

with a step of 0.02◦ in Bragg – Brentano configuration. The
radiation used was Cu−Kα1-Kα2, at 35 kV and 20 mA. A
standard sample of LaB6 was also measured under the same
conditions to account for instrument contributions to peak
width.

The chemical composition of the samples was verified using
X-ray energy dispersive spectroscopy (EDS) analysis in a
TESCAN VEGA 3 LMU BME with an OXFORD X-MaxN 20
mm2 detector coupled to the SEM.

II.2. Method of analysis

The diffraction maxima can be expressed through the Fourier
series, whose coefficients are related to the microstructural
characteristics of the material, i.e. coherent domain size,
non-uniform microstrains, stacking faults, etc. [9]. The Fourier
analysis is sensitive to statistical errors of the experimental
data [13], so the analysis is more stable using certain analytical
functions that properly describe the profile of the diffraction
maximum [14].

The Fourier expansion coefficients (AL) can be expressed,
in turn, as the product of two terms resulting from the
fundamental theorem of convolution of functions [15]:

AL = AS
L · A

D
L (1)

where AS
L are coefficients depending on the crystal column

length (L) perpendicular to the planes in diffraction conditions
and they are called coherence length coefficients. The term
AD

L depends on the non-uniform microstrain of the crystal
structure along with L and they are called microstrain
coefficients.

The relation 1 provides the basis for using Fourier series
analysis for the quantitative characterization of crystalline
imperfections in randomly oriented polycrystalline samples.

2.2.1. Warren – Averbach method (WA)

The WA method is based on 1 and it proposes a formalism
to separate both contributions mentioned above. According

to [9], the Fourier coefficients of a diffraction maximum can
be expressed as:

ln AL = ln AS
L − 2π2l2〈ε2

L〉, (2)

where the second term of 2 expresses the average value of the
microstrain along the column L, while the variable l depends
on the unit cell parameter along the crystallographic direction
being considered.

Expression 2 states that if multiple order reflections can be
measured for a given sample, then the Fourier expansion
coefficients can be extracted. From ln AL as a function of l2 for
a given set of harmonics, the AS

L coefficients can be calculated
from the intercepts, while the AD

L coefficients are calculated
from the microstrain values, which are determined by the
slopes of 2.

The AD
L values are calculated from the mean value of

the microstrain considering a Gaussian or Cauchy type
distribution [16, 17]. In the present work, a Cauchy type
distribution 3 was considered, since it presents a much
smoother fall in the diffraction profiles as observed in the
experiments.

AD
L = exp

(
−
π2L
Cd
〈ε2

L〉

)
,

where d is the interplanar distance of the peak, ε2
L〉 is the mean

square displacement and C is called the “cut-off” point [17].

It is known that planar defects can be classified as coherent
domain type defects. This means that when referring to the
average effective coherent domain size (〈De f f 〉), the effects of
both average crystallite size and planar defects (along the
same crystallographic direction) are taken into account. In
order to separate the two contributions, reflections that meet
the condition of being affected by this type of defect must
be used: h − k , 3n, n ∈ Z together with those that do not
meet the previous condition, where h and k are Miller indices.
For diffraction maxima fulfilling the last condition, following
relations hold [15]:

−

dAL
S

dL


L→0

=
1

〈De f f 〉
=

1
〈D〉

+

(
|l|

d
c2

)
(3α + 3β), (3)

for h − k , 3n, with l even.

−

dAL
S

dL


L→0

=
1

〈De f f 〉
=

1
〈D〉

+

(
|l|

d
c2

)
(3α + β), (4)

for h − k , 3n, with l odd.

While for those peaks that do not meet it, it holds:

−

dAL
S

dL


L→0

=
1
〈D〉

, (5)

where 〈D〉 is the average value of crystallite size, while the
left-hand side of 4 and 5 can be interpreted as an average
effective coherent domain size (〈De f f 〉).

Planar defects are determined from their probability of
occurrence, α (deformation defect) and β (twin or growth).
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In equations 3-5 the left-hand side is the first derivative of the
initial AS

L vs L curve. This result indicates that the intercept of
the tangent to the curve at L→ 0 with the abscissa axis returns
the value of 〈De f f 〉 from 3 and 4 and 〈D〉 from 5.

To implement the WA method, the free software WinFit [18]
was used. The fitting of the diffraction maxima was carried
out with the Pearson VII analytical function [19].

II.3. Williamson – Hall (WH) method

The WH method [10] expresses that the integral width of a
diffraction maximum (β∗ in reciprocal units) can be expressed
as a linear combination of two terms:

β∗ =
1
〈D〉

+
η

2
d∗, (6)

where the inverse of the intercept with the ordinate returns
the average coherent domain size 〈D〉, while the slope of 7
gives average non-uniform microstrain values.The use of this
method in the present work does not take into account other
microstructural effects that may result in the nonlinearity of 7.

III. RESULTS AND DISCUSSION

III.1. Analysis by Scanning Electron Microscopy

Table 1 shows the chemical composition determined by EDS.
The chemical microanalysis confirms that samples have a
composition close to the nominal one. Based on the AlTi alloy
phase diagram [11, 12], the composition range is found in
the Ti-rich zone where an order-disorder compositional phase
transition occurs.

Table 1. Nominal and EDS-determined values of the alloy AlxTi3-x.

x nominal x by EDS AlTi %
0.05 0.04(5) Al:4.5 % Ti:95.5 %
0.07 0.06(6) Al:6.6 % Ti:93.4 %
0.15 0.14(5) Al:14.5 % Ti:85.5 %
0.20 0.17(8) Al:17.8 % Ti:82.2 %

III.2. Structural analysis

Fig 1 shows the XRD patterns of the studied alloys. The
alloy crystallizes in a hexagonal close-packed crystal structure
(hcp), with space group (SG): P63/mmc (ICSD 58188) [20].
A qualitative analysis shows that the (100), (101) and (110)
reflections disappear with decreasing Al content. For the
sample x = 0.07, the very low intensity (101) reflection can
still be observed, but disappears completely for x = 0.05. This
behavior suggests a phase transition, which will be explained
later. The indexing is in correspondence with the main phases
present in the samples and only the (hkl) of the most intense
peaks have been indicated.

The occurrence of other low intensity reflections is observed
for x = 0.15 y 0.20 (marked with arrows), which have been
indexed as an AlTi fcc cubic phase with SG: Fm-3m (ICSD

43423) [20]. The most significant reflections, i.e. for x = 0.20,
are: (111) at 2θ = 36.41◦ and (200) at 2θ = 42.29◦.

Figure 1. XRD patterns for AlxTi3-xwith 0.05 ≤ x ≤ 0.20.

The evolution of the lattice parameters, as well as
the interplanar distance along the [001] direction, are
shown in Table 2. The lattice parameter a shows a
more significant change, while the parameter c increases
slightly with decreasing Al content. The variation of the
lattice parameters follows Vergas’ law [21] describing a
compositional order-disorder phase transition, typical of this
type of solid solution. This transition is also responsible for
the observed behavior of the (100), (101) and (110) reflections.

Table 2. Values of the lattice parameters for each composition, as well as the
distance between atomic layers (d) along the [001] direction.

x nominal a /Å c /Å d c/2/Å
0.05 2.94(4) 4.71(8) 2.35(9)
0.07 5.81(3) 4.69(0) 2.34(6)

/ 2.93(1) / 4.69(1) / 2.34(5)
0.15 5.80(8) 4.68(2) 2.34(1)
0.20 5.78(7) 4.66(9) 2.33(4)

Figure 2 shows the XRD patterns for x = 0.05, 0.07 and 0.20
in the same 2θ range. A detailed analysis reveals that with
decreasing Al content the (200) reflection, for x = 0.20, splits
into two not well-resolved reflections for x = 0.07, and then,
a single reflection emerges again for x = 0.05. This effect is
not observed for the (002) reflection.This behavior suggests a
compositional phase change mainly affecting the basal plane
of the hcp structure, which in turn results in an indexing
change of the pattern.

The substitution of Al and Ti elements in the crystal
structure can occur in an ordered or disordered manner.
The compositional order-disorder transition occurs around
x = 0.07.

This phase transition is represented in the phase diagram as
AlTi3→α-Ti. For compositions x = 0.20, 0.15, substitutions
occur in an ordered manner (Fig.3a), where Al occupies the
2c position and Ti the 6h position of the crystal structure
described by the SG P63/mmc (No. 194) [22 ] . For x = 0.07, the
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coexistence of both phases (AlTi3 +α−Ti) is evidenced. Finally,
for x = 0.05, the system presents a completely disordered
substitution (α-Ti) in both crystallographic sites (Fig. 3b). In
this situation, the new unit cell can be described by 1/4 of the
cell of the ordered phase (Fig. 3c). It explains the transition
observed for the unit cell parameter a (Table 2), as well as the
absence of the (100), (101) and (110) reflections for x = 0.05,
resulting in new indexing of the diffraction pattern once
redefined the new crystallographic basis.

Figure 2. 2θ range for x = 0.05, 0.07 and 0.20 exhibiting a compositional
order-disorder phase transition. Experimental data is represented with black
circles, the calculated pattern with red solid line and calculated Bragg
positions with vertical lines.

Figure 3. Basal plane projection of the ordered structure, (b) structure
with random substitution and (c) new crystallographic basis describing the
disordered system.

To confirm this crystallographic analysis, a diffraction pattern
has been calculated from a structural model taking into
account the occurrence of the ordered and disordered phases.
The calculated pattern appears in Fig. 2 represented by the
solid red curve superimposed on the experimental pattern
(black circles) for x = 0.07, while the vertical bars at the bottom
of the maxima correspond to the calculated Bragg positions
for both phases. The calculated diffraction pattern supports
the explanation given for the compositional phase transition
from the crystallographic point of view. The intensities ratio
of the (100) and (200) reflections for x = 0.07 suggests that the
highest volume fraction corresponds to the disordered phase.

The increase of c with decreasing Al content (Table 2)
may influence the type of stacking sequence dominant in
the crystal structure. The interplanar distance is an order
parameter determining the energy stability of a specific
stacking sequence [23]. Large planar defects density in an hcp
structure favors long-range stacking disorder in the crystal
structure, which in turn results in the occurrence of observable

diffraction maxima associated with an fcc stacking sequence
(arrows in Fig. 1). The increase of the interplanar distance, as a
result of decreasing Al content, has a direct effect on the planar
defects density, favoring the hcp sequence instead of the fcc
one. It explains why (111) and (200) diffraction maxima of the
fcc phase vanish as a function of Al content. This qualitative
analysis will be confirmed once the quantitative analysis of
the diffraction patterns is carried out in the next section.

IV. MICROESTRUCTURAL ANALYSIS

IV.1. Microestructural analysis for samples x = 0.20 − 0.15

The possibility of having (hkl) reflections of different orders,
such as the pairs (100)/(200) and (101)/(202), allows a
microstructural analysis approach within the framework of
the WA method. For the analysis, the pair of reflections
(101)/(202) was chosen on the basis of being reflections of
different orders and affected by planar defects.

Figure 4 shows the calculation of the Fourier coefficients (AS
L)

from (101)/(202) for x = 0.20, 0.15 once the instrumental
contribution has been removed. The intercept of the initial
slope of each curve with the abscissa returns the average
effective coherent domain size values 〈De f f 〉 = (21.7 ± 0.5)
nm and 〈De f f 〉 = (26.6 ± 0.5) nm for x = 0.20 and x = 0.15,
respectively.

Figure 4. Fourier coefficients (AS
L) from (101)/(202) for x = 0.20 and 0.15.

The average non-uniform microstrain values calculated from
the slopes of 3 for x = 0.20 y 0.15 were 〈ε〉 = (1.0∓0.4×10−2)×
10−3 and 〈ε〉 = (0.9 ∓ 0.4 × 10−2) × 10−3, respectively.

To determine the planar defects density, the 2θ range 50◦−75◦,
i.e, for x = 0.20 is analyzed (Fig. 5). The procedure is the same
for the sample x = 0.15. Two reflections hold the condition:
h − k , 3n, n ∈ Z (peaks (202) and (203)), and one meets:
h− k = 3n, n ∈ Z, (220). It should also be noted that reflections
affected by planar defects have an even and odd l index. This
would allow these three peaks to be used to determine α and β
defects probabilities using 3-5. But, to apply this methodology,
higher-order (220) and (203) reflections are not available. This
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limitation does not allow directly extracting the coefficients
AS

L and AD
L from the Fourier coefficients A(220)

L and A(203)
L .

Figure 5. Fraction of the XRD pattern forx=0.20 showing reflections that
satisfy the conditions h − k , 3n and h − k = 3n, n ∈ Z.

To overcome this difficulty, it will be assumed that microstrain
coefficients (AD

L ) of (220) and (203) reflections can be described
through the microstrain coefficients of the (202) reflection
(AD

L (202)). Although these coefficients depend on the variable
l, this approximation is made on the basis that the three
diffraction maxima are not very far away angularly and that
the microstrain distribution is isotropic.

The AD
L (202) coefficients can be determined according to (3)

using the known values of AL and AS
L for the (202) reflection.

The procedure consists in fitting AL coefficients by means of:

AL = AS
L · exp

(
−
π2L
Cd
〈ε2

L〉

)
, (7)

where C is the fitting parameter. Taking this approximation
into account, the coherent domain size coefficients AS

L (220)
and AS

L (203) can be determined through:

AS
L (220) =

A(220)
L

AD
L (202)

(8)

AS
L (203) =

A(203)
L

AD
L (202)

.

From the curves of AS
L (220) and AS

L (203) vs L, the values of 〈D〉
and 〈De f f 〉 can be determined respectively, as shown in Table
3. Finally, using 3-5 the values of α and β are determined.

Table 3. 〈De f f 〉, 〈D〉 values, and deformation faults probability (α) for x =
0.20, 0.15.

x nominal 〈De f f 〉 /nm 〈D〉 /nm 〈De f f 〉 /nm α ×10−3

0.20 21.7 ± 0.5 23.1 ± 0.5 13.3 ± 0.5 8.4 ± 0.4
0.15 26.6 ± 0.5 42.5 ± 0.5 18.8 ± 0.5 6.7 ± 0.4

The α values are of the same order as those reported
in previous studies for this type of alloy, although the
WA method in these reports is not based on the use of

different order reflections as previously mentioned [6–8].
The differences between the calculated values in similar
compositions are probably due to the methodology used in
each case, without ruling out an eventual experimental error
in determining the integral width of the diffraction maxima.
It is also reported that α defects predominate in this type of
AlTi alloy decreasing its density with decreasing Al content.

The behavior of α as a function of the Al content supports the
qualitative explanation made before regarding the occurrence
of low-intensity reflections indexed as (111) and (200), typical
of an fcc sequence within an hcp matrix and how they
disappear for low Al concentrations (Fig. 1).

Finally, it is also reported by other authors [1,6–8], that in this
type of alloy the probabilities of occurrence of twinning (β) are
negligible or return negative values, as in the present study.
This result is interpreted as an absence of this type of defect
in alloys with hcp-type structures.

IV.2. Microestructural analysis for x = 0.05

A qualitative analysis of the diffraction pattern for this
composition shows that the behavior of the integral width
values of the maxima as a function of 2θ can be described
according to the Caglioti formula [24]. This behavior, known
as isotropic type, suggests the non-presence, or non-detection,
of planar defects in the crystal structure. It can then be
assumed that the microstructure would be determined only
by the average crystallite size and by the average non-uniform
microstrains. Additionally, the indexing of the diffraction
maxima using the redefined crystallographic base (Fig.
3c) causes multiple order reflections to not appear in the
measurement range (Fig. 1).

Figure 6. Result of the Rietveld refinement. Experimental pattern (dots),
calculated pattern (red solid line), difference (blue curve below), calculated
Bragg positions (vertical bars). Goodnees of fit parameter χ = 0.88.

To carry out the microstructure analysis of this sample, the
WH method was used as an alternative way. For this study, the
free software FullProf [25] based on the Rietveld method [26]
in profile matching mode (Le Bail [27]) was implemented.
A standard sample of LaB6 was also used to remove the
instrumental contribution to the peaks.
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Afterwards, the Rietveld refinement (Fig. 6), parameters
describing peak profiles were determined. The integral width
(β∗), according to (6), will be determined by the average
coherent domain size (〈D〉 and by nonuniform microstrains.
In Fig. 7, the inverse of the intercept of the straight line with
the ordinate returns 〈D〉, while the slope gives the average
non-uniform microstrains value.

Figure 7. W-H curve (isotropic case), where the inverse of the intercept of the
straight line with the ordinate returns ¡D¿ and the slope gives the average
non-uniform microstrains value.

The average crystallite size is 〈D〉 = (16.7 ± 0.2) nm and the
non-uniform microstrains value is 〈ε〉 = (16.7 ± 0.2) × 10−3.
The result suggests that a decrease of Al content not only
diminishes the probability of occurrence of planar defects but
also leads to a decrease of 〈D〉 and an increase of 〈ε〉 in the
alloy. This result is in agreement with another report, in which
a composition close to x = 0.05 was analyzed as well [8].

On the other hand, deformation defect density values have
been also reported for compositions close to x = 0.05, and
even in pure Ti (hcp) [8]. An empirical relationship between
deformation defect density and Al content has been also
proposed. However, as has already been mentioned, the
methodology used within the WA method in this report could
have led to these results. In this work, based on the qualitative
analysis carried out in section 3.2 and taking into account the
absence of reflections corresponding to an fcc-type sequence,
it is not obvious to assume the long-range presence of this
type of defect in the crystal structure of this composition.

Although the magnitudes 〈D〉 and 〈ε〉 determined by the two
methods are not strictly the same by definition, they allow an
appropriate description of the evolution of the microstructure
of the AlxTi3-xalloy.

V. CONCLUSIONS

Qualitative analysis shows the occurrence of a compositional
order-disorder transition in aluminum-titanium alloys
(AlxTi3-x) within the composition range 0.05 ≤ x ≤ 0.20, as
well as the existence of a composition-dependent fcc phase
embedded in the hcp matrix. This minority fcc phase indicates
the presence of planar defects, decreasing its volume fraction

as a function of the Al content. The lattice parameters and the
interplanar distance constitute order parameters of the phase
transition.

The selection of the WA and WH methods for the
microstructural characterization was carried out on the basis
of the characteristics presented in the XRD patterns. The
analysis allowed to establish that in this type of alloy (i) the
occurrence of deformation defects predominates, while the
growth is absent, (ii) the average crystallite size decreases,
while nonuniform microstrains increase slightly when the
system moves towards a higher concentration of Ti.
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