
Rev. Cubana Fis. 38, 20 (2021) ARTÍCULOS ORIGINALES
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An alternative analysis of the NUT solution’s physical interpretation
is carried out, using the rod structure method of axial-symmetric
solutions in Weyl coordinates. We obtain that the NUT solution can
be interpreted as two counter-rotating rods of infinite rotation and
with identical masses and a central static rod of different mass.

Se realiza un análisis alternativo de la interpretación fı́sica de la
solución NUT, por medio del método de la estructura de barras de
soluciones axiales simétricas en coordenadas de Weyl. Obteniendo
que la solución NUT se puede interpretar como dos barras contra
rotantes de rotación infinita y con masas idénticas y una barra
central estática de masa diferente.

PACS: Classical general relativity (relatividad general clásica), 04.20.-q; singularities and cosmic censorship (singularidades y sensores
cósmicos) 04.20.Dw; exact solutions (soluciones exactas), 04.20.Jb

I. INTRODUCTION

The Taub-NUT solution, first derived by Taub (1951) [1] and
then by Newman et al. (1963) [2], has been the subject of
intensive study due to its interesting properties. For example
the NUT parameter contained in the solution has been
related to the force of the gravomagnetic monopole, but its
interpretation is under debate. The NUT solution is stationary,
asymmetric, but not globally asymptotically flat because it
has a semi-infinity singularity on the axis of symmetry at
θ = π. In [3] this singularity was interpreted as a semi-infinite
massless source endowed with a finite angular momentum.
The NUT solution has also been shown to be relevant in
studies of black hole entropy for binary solutions [4, 5].

In [6] proved that all geodesics of NUT space lie on spatial
cones; this property also leads to gravitational lensing. In [7],
the author proposes the construction of Skyrme fields; the
procedure is implemented for Atiyah–Hitchin and Taub–NUT
instantons. The NUT parameter has been implemented
to study the stationary axial-symmetric space-time and
nonlinear Born-Infeld electrodynamics [8].

A physical interpretation of the solution was given in [9],
where they show that the NUT solution is interpreted as two
counter-rotating semi-infinite sources of negative mass and
infinite angular momentum, and between them a finite static
source of positive mass. This study is carried out writing the
solution in terms of the potentials of the Erns [10] and the
integrals of Komar [11]. These techniques are widely used to
obtain and analyze binary solutions.

Stationary axial-symmetric solutions can also be characterized
by means of the rod structure, which provides information
about the sources, which make up the complete source, and

can be an alternative method to give a physical interpretation
of the solutions, as can be seen in [12] and [13], that is why
it is proposed to make one of said method, to study the NUT
metric, this in order for the reader to observe how to use
the rod structure. Given that the physical interpretation has
already been given in [9], it can be seen that when using the
rod structure we obtain the same interpretation but with an
alternative method and more simple. This type of solutions
could serve as support material in some gravitation course
and it can also be the starting point or motivation for the
students interested in the area. This work can be useful to the
scholars in the area of mathematical methods for gravitation.

In section II the stationary axial-symmetric Weyl metric is
briefly explained, later in section III an analysis is made of the
solution in order to be characterized by the rod structure. Then
in section IV it is mentioned how to obtain the information of
mass and angular momentum of the rod face that makes up
the rod structure of the solution. In section V the behavior
of the NUT metric is studied by analyzing the rod structure,
obtaining that the behavior is similar to the one reported in [9].
Finally in VI general conclusions are given.

II. WEYL’S METRIC

There are different ways to write the solutions of Einstein’s
equations in vacuum, depending on their symmetry; A
stationary axial-symmetric solution can support two Killing
vector fields V1 and V2, that generate a group G2, the
group is an abelian group if the Killing vectors commute.
Almost all known interesting four-dimensional solutions of
Einstein equations in vacuum, electrovacuum, or with some
fundamental matter fields belong to this class G2, and are
known as the G2 solutions. The line element of the G2 solutions
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can be written in the form of Papapetrou (1966) [14],

ds2 = e−2U(gabdxadxb + α2dφ2) − e2U(dt + Wdφ)2. (1)

Where we consider the Killing vectors V1 = ∂t and V2 = ∂φ,
and the metric functions U, gab, W and α depend only on
the coordinates xa = (x1, x2). The isotropic coordinates are
obtained from considering α = ρ, they are known as Weyl
coordinates (x1 = ρ, x2 = z).

In 1917 Weyl [14] found a 4-dimensional (4D) static
axial-symmetric (W = 0) solution of Einstein’s field equations
in vacuum, which is given by:

ds2 = −e2Udt2 + e−2U+2σ(dρ2 + dz2) + ρ2e−2Udφ2, (2)

where σ(ρ, z) satisfies,

∂ρσ = ρ
[
(∂ρU)2

− (∂zU)2
]
, (3)

∂zσ = 2ρ(∂ρU)(∂zU), (4)

where U(ρ, z) is an arbitrary solution of Laplace’s equation
U,ρρ + 1

ρU,ρ + U, zz = 0, in a three-dimensional flat space with
metric:

ds2 = dρ2 + ρ2dφ2 + dz2. (5)

Since U(ρ, z) does not depend on φ, it can be considered as an
axial-symmetric potential, corresponding to a certain density
of mass per unit length. For example, the Schwarzschild
solution corresponds to taking the source for U to be a thin
rod on the z-axis with mass 1/2 per unit length.

As the coordinates ρ and z can be chosen that span two-
dimensional surfaces orthogonal to all the Killing vector fields
∂yi (yi = (t, φ)) and then extended along the integral curves of
said fields. In this coordinate system, the vectors ∂ρ and ∂z are
orthogonal to ∂yi . If it is further assumed that the Killing vector
fields are orthogonal to each other, then the metrics (1) and
(2) can be written in compact form canonical ( for reference
see [5] ) or in Weyl coordinates such as,

ds2 =

2∑
i, j=1

Gi jdyidy j + eσ(dρ2 + dz2), (6)

with ρ =
√
|det(Gi j)|, where Gi j and σ are functions only of ρ

and z. Considering Einstein’s equations in vacuum Rab = 0,
we obtain that the equations for σ are,

∂ρσ = −
1

2ρ
+
ρ

8

2∑
i, j,k,l=1

Gi jGkl∂ρGik∂ρG jl

−
ρ

8

2∑
i, j,k,l=1

Gi jGkl∂zGik∂zG jl,

∂zσ =
ρ

4

2∑
i, j,k,l=1

Gi jGkl∂ρGik∂zG jl. (7)

III. STATIONARY SOLUTION ANALYSIS

In the stationary solution (6) it can be analyzed as in [5], Gi j = G
requires to be continuous; from the equation det G = ρ2,
However, this breaks down as ρ → 0, because for ρ = 0 we
have that det G = 0 so G is not invertible. Also it is observed
that the product of the eigenvalues of G(ρ, z) goes to zero for
ρ → 0, the eigenvalues G(0, z) are real, being G symmetrical
and include the zero eigenvalue.

A necessary condition for a regular solution is that precisely an
eigenvalue of G(0, z) be zero for some given z. Briefly dim (ker
G(0, z))≥ 1 except for isolated points denoted as a1, a2, a3, ...., aN
with a1 < a2 < a3 <, ..., < aN. So the axis z is divided into
intervals (−∞, a1), (a1, a2), .., (aN,∞) known as N + 1 intervals
or rods of the solution.

The solution Gi j has (N+1) rods (ak−1, ak) with k = 1, 2, ...,N+1,
defining for the solution G, (N + 1) vectors υk in<2 as,

G(0, z)υk = 0 for z ∈ (ak−1, ak), k = 1, ...,N + 1. (8)

Ifυk , 0, that is,υk ∈ Ker[G(0, z)],υk is called the direction of the
corresponding rod (ak−1, ak). The rod structure of the solution G
is defined as the specification of the intervals (ak−1, ak) plus the
corresponding directions υk related with the Killing vectors
V1 and V2. Let us mention that υk exists and is unique.

In general, the rods can be characterized as follows [15]:

Finite rods located in the temporaloid direction
∂t correspond to event horizons in space weather
semi-infinite rods in ∂t correspond to acelerated
horizons.

Rods located in the spacial directions ∂φ correspond to
intervals in the orbit of ∂/∂φ; if the rod is semi-infinite,
then this set extends to infinity, corresponding to an axis
of rotational symmetry with φ acting as the azimuthal
angle. Theφmust be identified with a certain period but
it is related to conic singularities.

The rod structure provides a tool to analyze stationary
solutions, although it is not possible to characterize to a
solution due to its rod structure, since there can be different
solutions that contain the same structure of rods. To give an
unique characterization, in addition to the rod structure, it
is necessary to impose conditions such as flat nod (see for
example [16]).

IV. MASS AND MOMENT ASSOCIATED WITH THE ROD
STRUCTURE

To interpret the parameters found in the metric functions of
the solution (6), we will follow the analysis of T. Harmark and
P. Olesen [17]. For this, the following quantity is defined,
−→
C (ρ, z) =

−→
C = G−1−→

∇G, (9)

where G(ρ, z) is given in (6) and (7). The components of the
new element are: Cρ = G−1∂ρG and Cz = G−1∂zG, so (9), it

complies with the equation
−→
∇ ·
−→
C = 0 for ρ > 0. In ρ = 0, we
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can have sources and it is possible to determine a source if the
following equation is fulfilled:

−→
∇ ·
−→
C = 4πδ2ρ(z). (10)

The delta-function δ2 expresses that we have sources for
−→
C at

ρ = 0. Since
−→
C complies with Gauss’s law-like equation (10).

Now we propose that
−→
C (matrix 2x2) as function a potential

B(ρ, z) as;

Cρ = −
1
ρ
∂zB(ρ, z); Cz = −

1
ρ
∂ρB(ρ, z). (11)

When we consider a cylindrical volume V = (ρ ≤ ρ0,
z1 ≤ z ≤ z2) and Gauss’ law for

−→
C :∫

V

−→
∇ ·
−→
CdV =

∫
S

−→n ·
−→
CdS (12)

we obtain that

−

ρ0∫
0

∂ρB|z1 dρ +

ρ0∫
0

∂ρB|z2 dρ −

z2∫
z1

∂zB|ρ0 dz = B(0, z1) − B(0, z2) (13)

and perform an analysis, it is possible to obtain a matrix
that represents the density of the system source, by means of
ρ(z) = − 1

2∂ρB(0, z) or ρ(z) = 1
2 lı́m
ρ→0

ρCρ.;

In the case the of solutions asymptotic to Minkowski space
the behavior of B(ρ, z) (see the work of T. Harmark and P.
Olesen [17]) are,

B11(ρ, z) = −
2Mz√
ρ2 + z2

B12(ρ, z) =
2Jz(3ρ2 + 2z2)

(ρ2 + z2)3/2
(14)

Being M the mass of the rod and J the angular momentum,
with the help of (13), ρ(z) and the behavior of B(0, z) (14) we
have,

2M =

z2∫
z1

dzρ11(z), −4J =

z2∫
z1

dzρ12(z), (15)

Thus, with the help of both matrices, it is possible to include
all the information of the rods (direction, cut and density or
mass) of the solution to be studied.

V. NUT METRIC

The NUT metric in Weyl coordinates takes the form,

ds2 = e−2U
[
e2K(dρ2 + dz2) + ρ2dφ2

]
− e2U(dt + Adφ)2, (16)

where

e2U =
(r+ + r−)2

− 4(m2 + l2)
(r+ + r− + 2m)2 + 4l2

; A =
l

√

m2 + l2
(r+ − r−), (17)

where r2
±

= ρ2 + (z ± a0)2 with a0 =
√

m2 + l2. Being m the
parameter associated with the mass of the linear source and l
the so-called NUT parameter.

Carrying out the analysis of the rod structure, we notice that
the NUT metric has the form of the metric (6), so we have,

G(ρ, z) =

(
−e2U

−e2UA
−e2UA ρ2e−2U

− e2UA2

)
, (18)

and in the ρ→ 0

G(0, z) =

(
−e2U0 −e2U0 A0
−e2U0 A0 −e2U0 A2

0

)
. (19)

As mentioned in the previous section, the values that divide
the axis z (−∞,∞), are those that do not comply with dim (ker
G(0, z)) ≥ 1, and in the case of NUT, it is easy to see that they
are z = ±a0, since G(0,±a0) = 0, so we will have the next rods
(−∞,−a0), (−a0, a0), (a0,∞).

V.1. Rod Analysis (−∞,−a0)

If we consider values of z ∈ (−∞,−a0) we will have the
following relationships z − a0 < 0 and z + a0 < 0, which
applying to the metric functions, we would have A0 = ±2l

and e2U0 =
z2
−a2

0
(mz)2+l2 , taking the equation (8), G(0, x)vk = 0, with

vk = (vt, vφ). Carrying out the analysis, we obtain the relation
vt + A

2 vφ = 0, so we can take vt = 1 and vφ = − 2
A0

, that is, the
rod (−∞,−a0) has address (vt, vφ).

V.2. Rod Analysis (−a0, a0)

If we consider values of z ∈ (−a0, a0) we will have the following
relationships z + a0 > 0 and z − a0 < 0, that applying to the
metric functions it is obtained that A2

0 = l2
a2

0
4z2 and the element

Gφφ = (ρ2e2U
− e2UA2) → −

z2
−a2

0
2a0

in ρ → 0. Carrying out the
corresponding analysis, we have that the rod (−a0, a0) has an
address only in vt.

V.3. Rod Analysis (a0,∞)

The analysis of the rod (a0,∞) is very similar to the rod
(−∞,−a0), in this case it is obtained that the rod also has the
address vk = (vt, vφ), but with vt = 1 and vφ = 2

A0
.

As for the rod structure of the NUT solution, it can be
visualized as in the figure (1). Where it is observed how the
axis z is divided into intervals, each rod has a certain mass
Mi and momentum Ji, it is also shown that in the case of the
intervals (−∞,−a0) and (a0,∞) have two addresses ∂t and ∂φ,
which is represented by the dotted lines between the rods,
and the arrow indicate that they are counter-rotating. Also,
the figure (1) shows the directions of symmetry (∂t and ∂φ)
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related to Killing vectors, where the rods or regions of the
solution are represented.

Figure 1. NUT metric rod structure showing directions ∂t and ∂φ.

Finally the mass and angular momentum of each rod can be
obtained using the equations (15), for the rod (a0,∞) it will be
obtained,

2M1 =

∞∫
a0

2l2(a2
0 − z2)

(l2 + (m + z)2)2 dz = m −
√

l2 + m2, (20)

analyzing now the angular momentum we will have,

−4J1 =

t∫
a0

−
4l[−2a2

0l2 + l4 + (m + z)4 + 2l2(m2 + 2mz + 2z2)]

[l2 + (m + z)2]2 dz

=
4l(m + t)(l2 + m2

− t2)
l2 + (m + t2)

; J1 = lı́m
t→∞

lt. (21)

The same analysis is applied to the rod (−∞,−a0) obtaining
that M3 = M1 and J3 = −J1 .

Now we analyze the rod (−a0, a0), obtaining J2 = 0 and that
the mass of the rod is M2 =

√

m2 + l2. It is very easy to observe
that from the sum of the masses of the three rods the mass
of the linear source m is obtained, and that the solution has
momentum J = 0. Remember that the rod structure is a way
of observing behaviors of axial-symmetric solutions. What
was obtained agrees with what was studied by V. S Manko
and E. Ruiz [9], in this work they used another method, such
as Komar integrals, obtaining the same information. In other
words, the NUT solution can be physically interpreted as the
model of two counter-rotating sources at the ends and a source
in the center with static positive mass and semi-infinite rods
with negative masses.

VI. CONCLUSIONS

By studying the rod structure of the NUT solution in Weyl
coordinates, it is possible to give an interpretation of its
behavior. The NUT solution is interpreted as two infinite
sources with opposite angular momenta, and negative mass
and placed between them a finite static source with positive
mass.

It is worth mentioning that the results obtained in this work
are in agreement with the results obtained by V. S. Manko and

E. Ruiz [9], because we obtained the same two semi-infinite
regions (rods) with opposite infinite angular momenta and
negative masses, also between the semi-infinite regions there
is a finite region (rod) with the same mass reported by V. S.
Manko and E. Ruiz.

However, the rod structure method is easy and suitable to
use to characterize symmetric axial solutions of Einsten’s
equations that are in Weyl coordinates, as in this case, it was
possible to apply it to the NUT solution even though it is a
complex solution to be interpreted. With the rods method, the
Nut solution’s analysis allows to determine the directions of
symmetry where the rods or regions of the solution are found.

The intention of showing the application of the rod structure
in this work is to provide alternative methods to interpret
this type of solutions, and thus to have more tools to study
and characterize solutions of Einstein’s equations with axial
symmetry.
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124021 (2008).
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