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Se presenta un formalismo matemático para el cálculo del perfil
intrı́nseco de un máximo de difracción a través de un proceso
de convolución usando un conjunto de funciones lineales por
intervalos. Este proceso de convolución es implementado en el
formalismo para la solución directa de un patrón de difracción de
una estructura cristalina de capas afectada por defectos planares.
Este procedimiento permite calcular la longitud de correlación (∆C),
cantidad que describe el grado de desorden en este tipo de
estructuras cristalinas. El resultado obtenido es validado a través
del método de Warren – Averbach para el análisis microestructural.

A mathematical formalism for calculating the intrinsic profile of a
diffraction maximum through a convolution process using a set of
linear functions by intervals is presented. This convolution process
is implemented in the formalism for the direct solution of a diffraction
pattern of a layered crystalline structure affected by planar defects. It
allows the correlation length (∆C) to be calculated, which describes
the degree of disorder in this type of crystalline structure. The
obtained result is validated through the Warren–Averbach method
for microstructural analysis.

PACS: X-ray diffraction (difraccón de rayos-X), 61.05.cp; microestructure (microestructura), 61.72.-y; Crystal defects (defectos cristalinos),
61.72.-y; Fourier analysis (Análisis de Fourier), 02.30.Nw.

I. INTRODUCTION

The physical and chemical properties of polycrystalline solids
depend directly on their structure and microstructure. Their
detailed study is decisive for the understanding and design
of those properties. The microstructure of a solid includes
the size and distribution of crystallites (coherent domains),
grain sizes and their orientation, the interaction between
their boundaries, the density and types of crystalline defects
causing of the crystalline structure, its chemical composition
and the number of the existing phases [1, 2].

The central point of materials science is to develop models
and methods that, together with appropriate characterization
techniques, allow the establishment of the relationship
between microstructure and properties. X-ray diffraction
(XRD) is a non-destructive and essential technique to obtain
information on the structure and microstructure of materials.

Microstructural analysis methods by XRD are necessarily
linked to the fitting of diffraction maxima. In the experimental
data, these maxima appear as a convolution of functions, since
the instrument’s contribution and the sample’s microstructure
are contained in the observed profile [3]. The separation of
both contributions is known as line profile analysis [4–6], and
constitutes one of the practical aspects of experimental X-ray
data reduction prior to a microstructural analysis.

The experimentally observed diffraction maximum profiles
f(θ) result from the convolution of two functions: the
instrumental contribution g(θ) and the sample’s contribution

(intrinsic profile) h(θ) [7, 8]. The convolution is defined as:

f (θ) = g(θ) ⊗ h(θ) =

+∞∫
−∞

h(τ)g(θ − τ)dτ (1)

The function g(θ) can be determined in two ways: (i) by using
the “fundamental parameter approach” method [9] or (ii) by
measuring the diffraction pattern of a standard sample. Once
the functions f(θ) and g(θ) are determined, then h(θ) can be
obtained.

II. CONVOLUTION PROCESS

The classical Stokes method [6] for numerical convolution
of equation (1) is not appropriate due to the oscillations
introduced in h(θ) as a result of the method’s sensitivity to
statistical errors in experimental data [10].

The convolution of analytical functions for modeling the
instrumental contribution has been used as an alternative
method [11] but the operation may consume significant
computing time. A solution to this problem is presented
in [9] where the integral in equation (1) is reduced to a sum
over appropriate intervals. It is assumed that within each of
these intervals, the function to be convolved is a polynomial
connecting adjacent points, resulting in a continuous function.

The use of series expansions for the convolution of diffraction
profiles has also been discussed by Sanchez-Bajo, F. &
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Cumbrera, F. L. [12] and implemented in the direct solution of
a diffraction pattern of a layered crystal structure affected by
planar defects [13].

It is known that pure Gaussian and Lorentzian functions do
not appropriately describe diffraction profiles [14]. Instead,
analytical functions such as the Voigt function [15], the
pseudo-Voigt function [16, 17], and the Pearson-VII function
[18] are used, which are more flexible in accommodating
a variety of possible profiles. Using Voigt functions is
appropriate for instrumental broadening [19] but their
analytical expression is more complex than the pseudo-Voigt
(pV) function. The pV function is defined as a linear
combination of a Gaussian function and a Lorentzian function.

To circumvent the above mentioned complexity, a method is
implemented in this work that provides a solution to Equation
(1), and generalizes the convolution process of the formalism
presented in [13]. The proposed formalism is built on the
concept introduced by [9], where the integral (1) is converted
into a summation of functions. As an example of application,
the diffraction maxima of crystals affected by planar defects
are used.

To numerically solve Equation (1), the normalized function
h(θ) is described by a pV function with adjustable parameters.
To remove the instrumental component g(θ), it is represented
as a set of piecewise linear functions, meaning small intervals
of the original function are taken and fit with straight
segments:

g(θ) = y1(θ) + y2(θ) + .... + yn(θ) (2)

such that:

yn(θ) = (mnθ + nn)H(θ − θminn )H(θmaxn − θ)

varies smoothly and continuously, and where mnθ + nn are
linear functions of slope mn and intercept nn. H represents
the heaviside unit step function [20], θminn and θmaxn are
the minimun and maximun values of θ within each interval
respectively, where θmax − θmin is the length of each interval.

The chosen interval is equivalent to the 2θ step of the
experimental data, which does not exceed 5 % of the value
of the full width at half maximum (FWHM). These functions,
being linear, can be convolved within each interval with the
function h(θ). Equation (1) then results in:

cn(θ) = yn(θ) ⊗ h(θ) (3)

and a set of functions cn(θ) representing each interval of the
original function is obtained after the convolution process.
These functions contain the adjustable parameters of a
pseudo-Voigt function, that is, they contain the adjustable

parameters of h(θ). Due to the linearity properties of the
convolution, one gets:

f (θ) =

n∑
ci(θ) (4)

The fitting of f(θ) according to (4) yields the values of
the parameters of the pV function h(θ), which contains
information about the microstructure of the sample under
study. The numerical solution process described for the
equation (1) is depicted in Fig. 1.

Figure 1. Convolution process in three parts: (a) Problem formulation, (b)
Segmentation of the instrumental function, (c) Convolution of the sum of
linear functions with a pseudo-Voigt function for fitting the f(θ) data.

Even though the maxima generated by numerical convolution
processes should be normalized, the use of multiple linear
functions in the calculation breaks this normalization. As a
result, the maximum must be renormalized in the final phase
of the process.

III. VALIDATION OF THE CONVOLUTION PROCESS

The convolution process is validated in the mathematical
formalism for the direct solution of the diffraction pattern
of a layered crystal with stacking faults [13, 21, 22], and the
results are compared with the standard Warren-Averbach
method [23, 24].

III.1. Method: Direct solution (DS) of the diffraction pattern of a
layered crystal with planar defects

This formalism is discussed in detail in [13,21,22] and outlined
here. It allows for determining the degree of disorder in a
stacking sequence of a layered crystalline structure due to the
occurrence of planar defects. A Fourier series can represent
the diffraction pattern of a layered crystalline structure:

~r ∗ = 1 + 2
∞∑

∆=1

A∆cos(2π∆l) + B∆sin(2π∆l) (5)

where is the interference function proportional to the
diffracted intensity by the crystal and it is defined in reciprocal
space. The coordinate takes continuous values in the direction
of the reciprocal axis c∗ and ∆ is the number of layers
perpendicular to the stacking direction in the crystal. The
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Fourier coefficients can be directly determined from the
diffraction pattern as follows:

A∆ =

1
2∫

−
1
2

Q(~r ∗)cos(2π∆l)dl ∆ = 1, 2, ... (6)

In a polycrystal with random orientation, the coefficients
B∆ = 0 , while the coefficients A∆ can be expressed as a
sum of integrals over each diffraction maximum within the
integration range [22]:

A∆ = cos(2π∆loi)

1
2−loi∫

−( 1
2 +loi)

vi(l)cos(2π∆l)dl

−sen(2π∆loi)

1
2−loi∫

−( 1
2 +loi)

vi(l)sin(2π∆l)dl , (7)

where the function vi(l) denotes the i-th maximum within
the integration range. The first term being the symmetric
part of vi(l); the second term describes the asymmetric
component. The terms outside the integrals determine the
periodic oscillatory behavior in A∆.

Conversely, the integrals result in a Dirac delta function for
a perfectly periodic stacking. In the case of a crystal with
planar defects, the integral describes a profile of a maximum
with broadening. In this case, the term within the integral will
give a damped oscillatory function that tends to zero with the
increase of ∆ [22].

The damping term, which depends on the shape and width
of the peak, will be the sole element determining the value of
the correlation length ∆c (expressed in number of layers) in
the stacking sequence. This magnitude takes into account the
loss of correlation between atomic layers in the stacking with
the increase of ∆ due to the occurrence of planar defects in the
structure [13]. Considering equation (7) as valid, the following
analytical function can be proposed for fitting the diffraction
maxima affected by planar defects [25, 26]:

v∆(l) = voCGC
∆(l) + SGS

∆(l) , (8)

where v∆(l) is the diffraction peak profile in reciprocal
space, which has been subjected to the reduction process of
experimental data (h(θ)). In equation (8), CGC

∆
(l) and SGS

∆
(l) are

the symmetric and asymmetric components of the pV function
used in this study:

GC
∆ =

1
2

∞∑
∆=1

exp(− f (∆))cos(2π∆(lo − l)) (9)

GC
∆ =

1
2

∞∑
∆=1

exp(− f (∆))sin(2π∆(lo − l)) , (10)

where f (∆) is a positive, non-decreasing function of ∆.

III.2. The pseudo-Voigt function

The pseudo-Voigt function (pV) is expressed as a linear
combination of Gaussian and Lorentzian functions:

pV ∗ (~r ∗) = ηG(~r ∗) + 1(1 − η)L(~r ∗) , (11)

where η is a weight coefficient of both components.

The exponential decay term exp(− f (∆)) for the pV function is
obtained by solving the integrals in equation (7), resulting in
the final expression for equation (8) as:

v∆(l) =

∞∑
∆=1

ηexp[(−
∆

∆c
)2] + (1 − η)exp[−

∆

∆c
]

(cos[2π∆(lo − l)] + sin[2π∆(lo − l)]) (12)

The function v∆(l) representsthe function h(θ) in the reciprocal
space.

III.3. The Warren –Averbach (WA) method

The WA method [23, 24] is employed in ”single peak”mode
analysis, whereby it is considered, a priori, that the only
contribution to the diffraction peak width results from the
average coherent domain size 〈D〉(hkl)

WA . This magnitude can be
compared with ∆c if one takes into account the layer spacing
along the same crystallographic direction. In this particular
case, both methods can be applied to assess the occurrence of
planar defects in layered crystal structures.

The WA method is also based in equation (5) and in this case
the Fourier coefficients would be determined solely by the
contributions of the A∆

〈D〉(L) coefficients, which represent the

contributions of 〈D〉(hkl)
WA

A∆(L) = A〈D〉
∆

(L) , (13)

where L is the crystal column lengthperpendicular to the
lattice plane in Bragg condition. Once a specific analytical
function is chosen to fit a peak, the A

∆
coefficients can be

directly calculated. Once the coefficients are determined, they
are used to calculate the magnitudes of interest (〈D〉WA

(hkl)) by
applying the procedure established in this method, which has
been widely disseminated in the literature [23, 24].

Finally, it should be remarked that in both presented methods
(DS and WA), the ”single peak” analisys will be implemented,
using only those diffraction maxima affected by planar defects.
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IV. EXPERIMENTAL RESULTS

IV.1. Layered crystal structure affected by planar defects

The AlxTi3−x, x = 0.20(AlTi 20) alloy crystallizes in a hexagonal
layer structure (hcp) with space group P63/mmc (ICSD #43416)
[27].

Figure 2. Visualization of the stacking of atomic layers along the [001]
direction.

Figure 2 shows the projection, along the [001] crystallographic
direction, of the atomic layers stacking separated at a distance
d. Each layer within the unit cell is represented by the A and B
letters. Both atomic layers are similar, but displaced laterally
with respect to each other by a fraction of a lattice translation
vector: s~r = s( ~a3 +

~b
3 ) with s = 0(A), 1(B) ∧ 2(C).

The vectors ~a and ~b define the basal plane of the unit cell.

In the presence of a perfect hexagonal structure, the stacking
sequence of the atomic layers would be represented by:
...ABABAB... along [001].The interlayer distance (d) depends
on the alloy composition.

In real crystals, planar defects collapse the perfect hexagonal
stacking sequence when atomic layers of the s = 2(C) type are
introduced. Any variation in the perfect stacking sequence
will be reflected in the width and asymmetry of certain X-ray
diffraction maxima.

IV.2. Diffraction pattern affected by planar defects

The XRD pattern of the AlTi 20 powder sample was recorded
at room temperature in a Pert Panalyticaldiffractometer in
Bragg – Brentano configuration, angular range: 2θ = 15◦ - 90◦,
with ∆2θ= 0.02◦. The radiation used was Ckα1,kα2 operating the
equipment at 35 kV and 20 mA. The sample was mounted on
a rotating sample holder to improve statistics in the number
of counts. A LaB6standard sample was measured under the
same conditions to take into account instrument contributions
to the diffraction maxima width and to correct for instrumental
zero in the determination of the alloy´s unit lattice parameters.

Figure 3 shows the (101) and (202) reflections of the
normalized experimental diffraction pattern. These reflections
have been selected for analysis because they satisfy:

h − k ,= 3n ,n ∈6c (14)

which establishes the condition of being affected by planar
defects [13, 21, 22].

Figure 3. (101) and (202) diffraction maxima of the AlTi 20 alloy.

IV.3. Convolution

Once the Cukα2 component has been removed using a
modification of well-established formalisms [28, 29] and
subtracting the background contribution from the diffraction
maximum, the convolution process described in session 2 is
performed. It must be remembered that the functions g(2θ)(hkl)
represent the diffraction maxima of the standard sample
angularly close to the reflections g(2θ)(hkl) of the AlTi 20
sample.

According to equation (5), the deconvolved profiles h(2θ)(101),
h(2θ)(202) (solid curves) are obtained from the observed
f (2θ)(101), f (2θ)(202) maxima (dotted curves) (Fig. 4).

Figure 4. Observed diffraction maxima f (2θ)(101), f (2θ)(202) (dotted curves)
and deconvolved profiles h(2θ)(101), h(2θ)(202) (solid curves).
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IV.4. Determination of ∆C and 〈D〉WA
(hkl)

The h(2θ)(101), h(2θ)(202) maxima are transformed from the 2θ
space to l space, a coordinate that takes continuous values
in the direction of the reciprocal c∗ axis. For the space
transformation, the unit cell parameters determined by a
standard least squares method were used. Fitting the functions
h(l)(101), h(l)(202) by least squares (Fig. 5) using equation (11)
results in the parameters reported in table 1.

It should be noted that as a result of the convolution process,
a narrower profile than the original is obtained, which will
necessarily lead to a reduction of the points describing
the intrinsic profile of the sample (Fig. 5). To maintain an
appropriate number of points describing the deconvolved
peak profile, the experimental peak should be measured with
a smaller step (∆2θ). However, the fit obtained from both
profiles still constitutes an acceptable result to determine the
parameters reported in table 1.

Figure 5. Fitting (solid curve) of the functions h(l)(101), h(l)(202) (dotted curve)
with equation (11).

Table 1. Fitted parameters values of h(l)(hol) and coherent domain length.

Parameters (101) (202)
lo 0.489 ± 2·10−3 0.990 ± 2·10−3

∆C / No. of
layers 143 ± 10 80 ± 10

(∆C-1)
c
2

(nm) 33 ± 2 18 ± 2

The magnitude (∆C−1)c/2, where c/2 is the interlayer spacing
along the crystallographic direction and c = 0.466(9) nm (the
lattice parameter) allowexpressing the correlation length (∆C)
in terms of a coherent domain length along the direction [001].

The Warren-Averbach method was applied to the same
reflections under the considerations made in section III.3,
using the WinFit software [30]. Figure 6 shows the dependence
of the Fourier coefficients on L for both reflections. From the
intercept with the abscissa axis of the tangent to the curve
in L → 0, the average values of the coherent domain are

obtained: 〈D〉WA
(101) = (40 ± 1) nm for the (101) reflection and

〈D〉WA
(202) = (21 ± 1) nm for the (202).

Figure 6. Fourier coefficients of (101) and (202) as function of L.

To compare the coherent domain values obtained through
both methods, it is necessary to take into account the
projection of the quantities 〈D〉(hkl)

WA along the [001] direction.
Once the angle between the lattice planes (101) and (001) in
the hexagonal system has been determined, the values of the
projections are: 〈D〉WA

(101) = (29 ± 1) nm and 〈D〉WA
(202) = (15 ± 1)

nm .

These values can be considered similar to those reported
in Table I. This result allows to generalize the convolution
process in the formalism “direct solution of the diffraction of a
layer crystal with planar defects” [13, 21, 22].

The difference in the calculated values for the coherence length
from both reflections results from not having considered in
either of the two methods the contributions of non-uniform
microstrains to the width of the diffraction maxima, a
contribution that increases with the increase of the (hkl)
indices values.

Another aspect to consider is that the calculated values of
coherence length do not distinguish between the contributions
due to crystallite size and contributions from stacking faults;
in fact, both contributions are classified as of “effective
size effect” type [23]. Well-established procedures exist in
the literature to separate these contributions [31], where
reflections that meet and do not meet the condition given by
(13) are employed. The mentioned limitations do not affect the
fundamental purpose of this article, which is the validation of
the formalism presented in section II.

The use of the DS method also provides information about
the position of a peak in l space, while the WA method does
not. For an ideal hex.sequence, the positions of (101) and (202)
reflections should be at lo = 0.5, lo = 1 respectively. The shift
of the peaks with respect to their ideal position, although not
significant in this case, usually provides information about an
emerging change in the stacking period due to the occurrence
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of planar defects.

V. CONCLUSION

A new convolution method for calculating the intrinsic profile
of a diffraction maximum was used during the experimental
data reduction process of a diffraction pattern for a specific
system. The calculation of the coherence length from the
correlation length within the framework of the DS method
using a pV function with an exponential decay term proved to
be robust. The calculated values coincide with those calculated
from the WA method. The described convolution procedure
has been implemented in Wolfram Mathematica [32] and is
available upon request to the authors.
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