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RESUMEN

-Se revigan aspectos basicos del.
andlisis de texturas. Se presentan.
- los conceptos fundamentdles asocia
dos a la funcidn de distribucisdn
. de orientaciones en aqregados poli
" eristalinos sobre la basé
‘do de désarrollo en series. Se des

criben-los métodos de determinacidn
de texturas mediante dlfractometrxa

neutrdnica y se comparan entre si
las téeonicas de dispersién. angular
y tiempo de vuelo. Se expenen- resul
tados experimentales representatl—
vos correspondientes a diversos
sistemas. Se discute la relacidn
‘entre la textura y las propiedades
policristalinas. Se introducen las
tendencias. actuales del an&lisis
‘de texturas, incluidas las llama-
das "texturas fantasmas" y la simu
lacion por computadoras de la for-
macidn de texturas durante la de-
formacién pldstica.
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" ABSTRACT

A review is given of some basic
aspects of texture analysis. The
main concepts related to the orlen
tation distribution functlon of |
polvycrystalline solids are presen—

ted on the basis of the series ex-

pansion metheod. Neutron diffraction
technigues for texture determina- ~~
tion are described and a comparison
between "classical" angle-dispersi

‘ve and. time-of-flight metheds is

carried out. Representative experi
mental results are given for seve-
ral different systems, The relation
between texture ‘and polycrystal pro
perties is discussed. Present:
trends in texture analysis are con
sidered, “including the so-called ..
"ghost-phenomena"” and the computer
simulation of texture formation

as a result of plastic deformation

. pProcess.



INTRODUCTIOMN

Many of single crystal properties such as Young's modulus, hardness,
magnetic susceptibility etc., are anisotropic. Therefore, the average of
these physical properties in technically important polycrystalline mate-
rials depends on the frequency of crystallites in the various orienta-
tions, the so-called texture of the material which is completely described
by the orientation distribution function (ODF}, to be defined below. Hen
ce, physical properties of investigated specimen can be calculated, if
its ODF is known. Many technologically important processes like .plastic
deformation, crystallization, phase transitions, etc. may vary crysta-
llite orientations. Therefore, changes of preferred crystalline orienta-
tions may be used as a sensitive indicator giving insight into such pro-.
cesses. These are strong reasons why the knowledge of the ODF of polycrys
talline materials is important for materials science and metallurgical in
dustries as well as for progress in understanding of microscopic moving
and ordering processes in solids, for example, in solid state deformation
theories. Furthermore, the final texture can be used as an indicator for
the history of the material. This latter espect is especially relevant in
geology where it provides information about processes which have taken '
place millions years ago.

At present, widely used methods to lnvestlgate the texture of a given
sample are pole figure determination by x=ray or thermal neutron diffrac

tion. The corresponding ODF is obtained by computer analysis of the infor
tion contained 'in several pole figures.

TEXTURE'DESCR&PTIONS AND MEASUREMENT: __._ e

The most straightforward but very tlme consumlng approach to determine
the ODF starts from' 51ngle orlentatlon measurements obtained most from
electron diffraction or optical: blrefrlngence /1,2/. An alternative method
allowing for a high statistical relevance and high angular resolving power,
is an integrating measurement of all crystallites with a given orientation
in the specimen. Techniques'of'th;s type are pole figure determinations by
X-ray or thermal neutron diffraction. |

A pole figure is a presentation, on a stereographlc pro;ectlon of the
distribution of & particular crystallographic direction with' respect to
the specimen geometry. In Fig. la the stereographic projection of the
points P and Q on the unit sphere to P and Q¢ on the:equator plaﬁe is shown.
Rotating the sample with respect to the scattering vector all the sphere
can be covered with experimental points. In this manner the intensity dis
tribution of the Bragg reflection (hkl) in dependence on sample position
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is ‘determined, The specimen rotations are.realized by means of a special
texture goniometer consisting in general of three'indepeﬁdent rotaticnal

axes being perpendicular fto each other like it is-schematically shown in

Fig.-: 2. Fig.1b represents the experimental pole figure (0002) from a ro-

lled Ti-sheet. The specimen geometry is spe01f1ed by the three orthogonal
‘directions: RD (rolling direction). TD (transverse direction) and.ND ({sur
face normal direction) in the centre of pole figure. Because of the sym-

metry'of this pole figure it is sufficient to measuré one guadrant of the
stereoqraphic projection to represent the texture.

The orientation of a crystallite in the sample is described by the
three angular parameters. Two angles fix a given crystallographic direc-
tion (hkl) with respect to the specimen coordinate system. The crystal
can be rotated around this direction to be described by the third angular
parameter which is "lost" in pole figure measurements, Therefore, the
threedimensional ODF has to be computed on the base of several pole figu-
res of different crystallographic directions. The mathematical background
for this treatment is given in a later section.

'An alternative method for presenting texture inforﬁation is the inver-
se pole figure. The importance of this technique increases especially with
progress in texture investiga;ion'by means of energy dispersive X-ray and
neutron time-of-flight diffraction. The inverse pole figure is a presentgd
tion on a stereographic projeétion of the distributicn of a particular
specimen direction with respect to the crystal geometry. In Fig.3 the irre
ductible inverse pole figure ranges are shown for cubic and hexagonal crys
tal lattices. They are specified by (001), (101) and (111)'directidns in’
the cubic and by (6001), (1010) as well as (1120) directions in the hexa-
gonal case., In analogy to normal pole figures the inverse pole figure is
repreqented by two orientation parameters as weli. The third oné is lost
' because of the poss;ble rotation of the sample around the given sample.
'dlrectlon. '

At present widest used method_for texture analysis is the angle disper
sive X-ray diffraction. Because of the two or three orders lower linear
absorption coefficients of neutrons in the most of materials both angle
dispersive and time-of-flight neutron diffraction are more poweffull tocls,
specially for volume texture determination. There are two serious diffi

culties raising from high absorption of X-rays in materials:

- The measurement of outer pole figure range which can be determined in
transmission scattering geometry only. In the case of high specimer and
crystallographic symmetries an inversion of incomplete pole figufes can
be used to obtain the ODF. The expense for this treatment increaces rapi-
~d1y with decreasing symmetries qf sample and crystal lsttice.

.
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-.Usually,'xeray texture investigations are limited to fine'grained mate-

rials being a eerieus restriciién'for geological problems especially.

‘The 1mportant restraint of neutron texture analySLS consists in its

coupling to 'an eff1c1ent neutron source, i.e. to a nuclear reactor.

The following discussions are restricted to neutron methoeds only. The

basic equation for any diffraction technique, Bragg's law:
A=24, sine | (1)
contains two variables for a given Bragg refleétion_(fixed dhklj' i.e.
neutron wave length A and Bragg angle ©. One of them is kept constantly
in the experlment Respectively, are two methods for neutron diffrac
tion: ' A .
- In the stationary angle*dispe:sivé meEHbd & monochromatic neutron beam
is used. The neutron flux which hits the sample is constant during. the
experiment. To analyze various Bragg reflections {different dhkl} the
angle @ is changed ' ,
- Using the full neutron spectrum which contains all wave lengths A, the
complete diffraction pattern can be detected at constant scattering angle
20. In this so-called time-of-flight (TOF) method the neutron wave length
{cr energy) A~E_5) is determined via time of flight of the recorded neu-
tron for a known flight parh L. Ihe_linear_relation" -
Alnm] = 3296.78 T [s}/L [m] - (2)

connects the wave length A with time of flight T. For TOF method the neu-
tron beam has to be pulsed. This techriigue is similar to the energy dis-
persive X-ray diffraction 73,4/. In Fig.4 the Bragg law is shown in a A-8
coordinate system for a bcc crystal. Lines being parallel to the A-axis
(@=consgt.) cerre5pond to a TOF experiment; parallel to the ©-axis (i=const)
the._angle dispersive method ie C:harar:':térized. The intersection with the curves
for different lattice planes determine the position of Bragg reflections
in the diffraction pattern. Furthermore Fig.4 shows the TOF method to be
able to record all non-forbidden reflection contrary to angle dispersive
technique. For texture analysis by means of angle dlsper51ve method dou-
ble axis diffractometers are used ‘The integrated 1ntens;ties of one Bragg
reflection (hkl) are determined in dependence on speclmen p051t10n with
respect to the scattering angle successively. The aperture ‘and the colli-
mation in front of the detector are choosen in a mannér to tecord the com
Plete peak intensity in one‘qiffractometer position. In this case one po-
le figufe is determined, given by disérete network‘of'points. A number of
pole figures has to be measured for several independent Bragg reflections
to get unambiguous results concernlng the texture of investigated speci-
men.



In TOF technique an experimental equipment is used like shown schemati
cally in Fig.5. Pole figures can be measured in the same way as in angle
dispersive method determining Bragg reflections in dependence on a sample
position with respect to the scattering vector «. Contrary to the angle
dispersive method, in all measurable pole figures the equipositioned’
points are determined in one experlment simultaneously. On the.other hand
the simultaneous recording of all reflections corresponds to that: informa-
tion which is necessary for inverse pole flgure comp051t10n. Therefore
the TOF technique is a straightforward method to determine inverse pole
figures. The integral intensities of Bragg reflections, i.e. peak areas,
of TOF diffraction spectra are computed by means of fit programs. Such a
procedure enables to use the information of overlapping peake for texture
analysis contrary to angle dispersive method where separated reflexes are
considered only. Fig.6 illustrates the situation for overlapped reflec-
tions showing texture effects. o -

If data handling via inverse pole figures is possible, the texture for
mation in dependence on external influences (temperature, pressure, fields)
can be observed in TOF experiments immediately because of its fixed scat-
tering geometry. Equivalent investigations by conventional technique would
be much more expansive. ' -

In this way the opening of the neutron TOF difffaction for texture ana
lysis gives the possibility to investigate a much wider spectrum of pro-
blem in this fielde. On the other hand, the expanse for data handling and
measurement time is approximately independent of the number of determined
pole figures, but much higher than for angle dispersive studies of samples
having cubic or hexaqonal lattice symmetry. Therefore, the TOF method
_,should be used espec1a11y for problems requiring a large number of pole
figures for mathematical texture analysis, i.e. for low symmetry and mul-
tiphased substances. A secend field for TOF technigue are in situ investi
gatiens ef_texture formation p;ocesses. '

MATHEMATICAL BACK.GROUD
The orientation of the crystal coordihate system fixed at given .cell

with respect to the sample system attached to the specimen can be descri-.
. bed by Eulerian angles a, B, v, represented by g9 (see Fig.7) /5/.

The orientation distribution of the crystallites in the'sample is then
quantitatively characterized by the ODF fig) -

Jf(g)dg = 1, dg = sin Bdadpfdy/Bn? {3)

G
with

G:0<a, vy<€2n, 0 €<SBEN
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Assuming that all crystallites possess the same shape and size, then
f(g) is the probability density for a crystallite in the sample to have
the orientation g.

The'symmetry properties of the considered crystal are reflected in the
ODF, i.e. - ‘
fig) = f(g.gu) T (4)

.where gu represenfs any'retation of the point group of the crystal. In
many cases the sample possesses any symmetry, which is not mathematically
exact, 1ike_rotatione1 symmetry in wires or orthorhombic symmetry in ro-
lled sheets. This means, equivalently'tolequ. 4 the condition holds

f{g) = f(g -9} : (5)

for spec1men symmetries. The equs. 1 and 2 limit the irreducible range of
ODF to be determined for gomplete texture analysis.

How to reproduce ODF from experimental pole figures or inverse pole
figures? This problem is discussed by Matthies /5-13/ in general form. Up
-to now some methods are known for pole figure’inversion to calculate ODF.
from experimental results, for example the so called vector method propo-
sed by Ruer and Baro /14-15/ and the Imhof-method /16, 17/ Widely used
is a treatment basing on series expansion of ODF and pole figures which
is proposed by Rce and Bunge /19, 20/. In the following this method is
outlined in a compact form. The ODF can be expanded into a series of gene
ralized spherical harmonics
) L

{ . Z Cmn Tmn (g) ) . (6)

flg) =
0 m=-g n=-% % .

"hﬂa

On the other haﬁd pole figures are specific twodimensional projections of
the threedimensional ODF. In this way the pole figure ﬁi= fhkl] can be

expanded into a series of spherical harmonics with the same coefficients

'CTn which are used in equ. 4.

. . o
mn. . m n >
kE(h;)kl(y) : - (7)

-+

PK_(y)-- an .

-2 22+1 T2

Hhﬂ&

0 m=-£ n=

The unit vector ; gives the direction in the s@ecimen coordinate system.
If there are symmetries of the crystal lattice and the sample some of CT“
vanish identically. Therefore, Bunge has introduced linear combinations

of spherical harmonics’

-, |
T“”(g) = 7 ¥ (A?”)* AE“,T??;{g) S - (8)
m=-2 n=-g _ -
and
k) (B) = E L L | - (9)



xd = i A““ S @
. o=

resoective]v The' coeff1c1ents A and A?u are chosen in a way that sphe

rical’ harmonlcs reflect crystal symmetry {index u) -and specimen symmetry

(v) /20/. For a given crystal symmetry and series _expansion dedree there

are M(1) linearly 1ndependent p0551b111t1es to construct symmetrlcal har—-

monicé ku(h) For sample symmetry there are N{1) variants of k., (y} respec-
t“vely. In Fig.8 M{!) is shown for different symmetries and even 4 only.

‘ Unfortunately in general diffraction experiments are not able to distin-—
'guieh reflexions h and -h because of Friedel's law. Therefore, only mixed
nole figureé _

By, @) = iﬁi; (ry (¢) + Py ()] - (10)
can be measured. Taking into account the condition

[ = (=1) %Mo ‘ :

as well as equ,7, the formula for the experimental pole figure'ﬁ; has to
be written as followe: '

: w M({2) N{(2) :
= 4n : {(1+{(-1) ) HY | HY e v, >
Br (¥) = o= ) L o S kVEDk ) (2)
hy Ki 220 p=1 =1 2(22+1) i’ :
where Nh is the pole figure normalization factor. If ¢ is odd, the co-

rresponding term on the rlght side of equation 12 vanishes. This is no
reason CuY for odd £ to be zero, but it is impossible to calculate them
from diffratlon experiments. In this way, a reduced ODF f£f(g) comoosed '
from even & C" can be determlned only The true ODF has the form -

f(g) = f(g) * f(g)...— L . 1 (13)

where f(g) describes the odd C part. This mentioned loss of information
leads to the so - ealled ghost effects in reduced ODFs. Conceptions for
their corrections will be discussed later. Equation 10 connects experimen
tal pole figures with a reduced ODF via series expansion coefficients for
even £ only - ‘ | :

£lg) = § an) fgj_c:“ " (g) S (14)

2=0(2) p=1 v=1

Do simpllfy Cuv determination the orthonormality of spherical harmonics
can be used if complete pole figures are available. Multiplying equation
10 with k (y) and integrating about the full pole figure range

v, - 411f$_~* - Vi LT .
Fl(hi)‘ _gi , Phi(y) k., ) c}y | _ (15)



a factor F: (hi} is calculated, which is connected with series expansion

coefficients by

= 4n By @
(h,} = . E 71+7 C¢ K (ni) . _ (16)
This_equatioh system is of low order compared with equ.jo. Usually the
number of measured pole figures should be greater than M(£ _ )} to minimize
the influence of experimental errors by means of a least square fit.

Finally, the nofhali?atiqn factor of pole figure is given by

N = 6 Bo () & | S T an
8y JooBy Yy - .

1f pole figures are described by polar coordinates the increment dy is
equal to 51anBda where o is the azimuth. The adeguate way to calculate
series coefficients from inverse pole figures is not important up to now..
Furthermore, the series expansion formalism includes the p0551b111ty to
compute C:v from incomplete pole figures. This is important especially for
" the X~ray texture analysis having serious difficulties to measure the pole
figure range near the equator. In detail the incomplete pole flgure treat

ment is outlined in /21 22/

RESULTS

The most prominent symmetry ¢ontribution for which quantitativé texture
investigation have been carried out is cubic crystal symmetry connected
with sheet symmetry_assumed as mmn. As an example Fig. 9a shows pole figu-
res measufed by means of angle dispersive neutron diffraction. The.speci-
men was the eutectic ailoy Al - 5% Ca - 5% Zn (% = weight per cent). The:.
sample was reduced with a degree of 87% by hot rolling at 550°C with 75%
by cold rolling. After that the specimen was superplastically deformed at-
550°C with strain rate 1.2 10-1 to a degree of 50 per cents. From the ex-

perimental pole figures, the ODF was calculated. It is shown in Fig. 9b.

At the IBR-30 reactor of JINR, Dﬁbna, a rolled sheet of microduplex
steel has been studied. The specimen consists of a and y phase of iron
with bec and fce lattice respectively. On 30m flight path diffraction
patterns héve been measured for different sample positions. at constant
scattering angle 26 = 90° /23,24/. Fig. 10 shows the important part of TOF
spectra for specimen orientations KD, RD and TD. The texture effect leads
to relative intensity changes for different reflectipns from one spectrum
to thé .other. With the help of a fit prbgram,,? peéks for each phase could
be separated, i.e. 14 pole figures could be determined simultaneously.
Texture analysis, including data from the anglé dispérsive_method /25,26/

~a
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has given interesting results, concerning interactions between texture
components of both phases.

It was mentioned above, that the information of one TOF diffraction
pattern is equivalent to the corresponding inverse pole fiqure. This fact
has been used to observe texture formation durinq recrystaliization pro-
cess of copper immediately /27/. The sample was composed from 96% deformed
copper bars possessing axial specimen symmetry. In this case the inverse
pole figure of symmetric axis contains the full texture information. Becau
se of the low neutron flux at IBR-30 reactor, the minimum time for one
TOF spectrum is about 2 hours. Therefore, a constant temperature of 225°C
has been chosen to extend the recrystallization process up to 35 h. In
rig.11 tﬁe TOF spectra before and after heating are compared with the dif
fraction pattern of texture free copper powder. Measurements have been ca
rried out in intervals of 2 h. Fig.12 shows inverse pole figures for dif-
ferent recrystallization times measured at the stationary reactor RpRr of
CINR Rosendorf. The deformation texture of copper bars consists of two components
<100> and <111>. Relative 1nten51tv changes of (111) and (100} points re-
fer to texture modifications during recrystallization process. The inte-
gral intensity of (111), (200), (311) and (422) reflections depending on
heating time is represented in Fig.13. It 1s ‘shown that a large number of
grains passes from orientation (111) to the {100) one. Very powerfull pu]
sed neutron sources like the new IBR-2 reactor of the JINR Dubna, will '
allow more realistic studies of recrystallization. The technologically
interesting processes of this kind turn out in less 1 hour. g;

Using the neutron TOF diffraction for the texture analvsis, there are
interesting perspectives for investigation of geological problems., A lot
of minerals have low lattice symmetry. Therefore, their fabric structure
cannot de investirated br means of angle dispersive technicues efficientlv
At the IBR-30 reactor the quartz phase texture of a granulite sanole has
been studied. Quartz has trigonal lattice symmetry. In this case the thkil}
and {(khil) reflections cannot be separated in any diffraction pattern
although they are not structurally equivalent Nevertheless, the full
quantitative texture analysis can be carried out if any pole fiqure with
h = k and 1 = 0 has been determined. From TOF spectra of granulite, 8 pole .
figures could be separated They are shown in Fig. 14 Fig.15 represents
the ODF computed from experimental data.

TEXTURE AND PROPERTIES

Now the relation between texture and physical pr0pert1es in a polycris
talline sample is briefly discussed. Let us represent the relation between
two orientation dependent quantities x and Y by the phy31cal property E
having r-rank tensor character:



Y = E * X. : - (18)

Here Y is a measurable m - rank tensor, X is a measurable n - rank tensor,
and m + n = r. Examples of properties described by fourth-rank tensors are
the compliance and its inverse, the stiffness, while the refraction index

and the electrical conductivity are second-rank tensors.

~In the Hill approximation, neglecting-the_orientation correlation among
crystallites, the polycrystal mean value of a property is given by the

,Simple averaged quantityrﬁ determined by:

'ﬁ‘E &) av {19)

<=

This in turn may be calctulated using as a weight function the ODF:
- [ ] - R
E = J E(g) f(g) dg (20)
Here the integration domain is the Euler space.

If the property under consideration 1s .an orientation dependent sca-
lar, for example the Young modulus or the magnetizatlon energy in a mag-
netic field, then equation (3) simplifies to

E(y)';'é E(h)R; (h) aa (21)

where R»(h) is the 1nverse pole frgure for the sample direction y. The
1nteqrat;on is taken over the projection sphere.

In equation (20) the texture is characterized by the complete QDF.
There is an alternative averaging method that employs -only. the low-order

expan51on coeff1c1ents Cuv of the ODF It can be shown.that the components

of the polycrystalline everaqed property E are given by:

B S S M- S RN B | 'f 3.3 ..:j')'E. . (22)
i r . L . 12 R
. 1 o 31]2"'Jr o 7 r .:r ]_.132-7--31:.- :
where
r u\) . s ) nv -
ali ... i ; oo = a I S T T
31 __Jr’ LZO E é az (il 1r g 31‘, Jr)cz "231

Here Ej ..Jj' are the components of the monocrystal tensor. The avera-—,
' 1

ging coeff1c1ents a(1 ...1rr'j-...j } characterize the texture, as they _

depend on. C .. It should be noted that only the coefficients up to 1. = r

(rank of E} enter in the average equations. The geometrlcal factors _
(1 ...j } are general quantltles for a glven crystal and sample sjmmew_

-trv They are tabulated in 728/,




The method of equation (21} could be driven to a useful ccefficient
form as well. Tensors are partially (but comprehensibly) characterized in
the so-called surface representation by an orientational dependent scalar.
This- is the case, for example, of the elastic tensor and the Young modu-
lus (see, Nye /29/. For second-rank tensors the -surface representation is
given by the scalar E(h) = #-E*fi, described by the ellipsoid

- 2 2 2 . -
E = E,,h? + E,,h} + E  h} (24) .

-

where Eiy (L = 1,2,3) are the components of E in the principgl axis coor

dinate system and hi are the projections of the unit vector ﬁ on axis i.
For cubic crystals, all Eii are equal, and thus, second-rank properties
are isot:opic.

Expanding the monocrystal property E(h) in the symmetric harmonics:
> L u H >
E(R) = | ] e, k, (h) (25)
and averaging, it follows that

(¥ | w (26)

E(y) = ] [e k
£ v

for the texturized polycrystal. Here the averaging coefficients are given
by

v _ 1 Houv
e T ZeA Eez Cy ' (27)

So, the knowledge of the monocrystal parameters ez and those of the tex-

ture coefficients C$°(1=0,...,r)- permits to determine the averaged poly-
crystal property E(y). .

For the so-called uniaxial properties, like the Young modulus, all the
odd-L parameters e: are zero. In these cases, the considered polycrystal

property is independent of the odd part of the ODF.

PRESENT TRENDS IN TEXTURE ANALYSIS

At present one of the most puzzling problems in texture analysis is
the_loss'of information of the ODF, determined from pole’ figure measure-
ments, i.e. the problem'bf so-called ghost phenomena, being akle to falsi
fy the ODF markedly. ‘ |

"Ghosts" were firstly'characterized by Matthies /30/. This author has sys
tematically investigated their properties and searched for practical me-
thods to determine them /5-13/. '

In the following, some methods to correct or to elude ghost effects
are discussed briefly.

Wagner et al. /31/ have avoided diffraction based measurements of po



le figures. They applied a polarizing microscope method to determine the
orientation of individual grains in samples of birefringent substances
like calcite. For the considered class of materials their result appear
promissing, notwithstanding the tediousness of the experimental procedure.
Bunge and Esling /32, 38/ propose to determine the odd part of the ODF
using zero - domains of pole figures. These zero -domains must imply ran
ges Ip in the unreduced ODF, where f(g) is identical to zero as well.
Then the equation holds-_

-
~ by

f(ggy) = :f(gF) : ' - {28)
From this condition the szpcoefficients for 1 odd can be calculated, Of
course, such a treatment is restricted to sharp textures with true zero-
domains in. pole figures.:

Another analytical method permitting the correction of ghost. phenome-
na is the representation of the ODF by model components‘(most Gaussians)
/34/. The £it is not too complicated if the ODF consists of a few sharply
separated components ohly. For overlapping peaks a number of secondary
conditicns must be taken into account. This method avoids all series trun
cation errors arising in the Bunge-Roe method.

In /35/ the experimental possibilities have been evaluated tc measure
unreduce pole figures using anomalous scattering of X-rays or neutrons
respectively. In quartz-like structures the principal possibility of low
degree ghost corrections is demonstrated, supposing high experimental -
accuracy. According to /35/ the use of anomalous neutron scatterlng tc de

termine odd part of the ODF is possible for selected elements only. o

For a number of typical orientation of cubic materials, maps of f(g)
have been computed for a normalized Gaussian in the Euler space /15, 36/.
Comparing these maps with reduced ODFs, calculated from experimental pole
figures, ghost phenomena could be excluded in a high degree.

Finally, Matthies et al, /12, 37, 38/ have proposed a new method to
reproduce the ODF from pole figures usiny a so-called conditlonal ghost
correction. The method is an iterative procedure, basing: partly on consi
deration of Willlams /39/ and Imhof /17/ as well as on the condition
£7(g) 2 0. The number of required iteration steps is 1nf1uenced by the
choice of zero approximation sufficiently.

A further problem of high importance in texture research is the study
of prefered orientation formation as a result of a plastic deformation
process by computer simulation. The model, introduced by taylor in 1938
/40/ gives the conceptional basis of this theory. According to this con-
ception, the preferred orientation arises from the reorientation of the
crystallites if they undergo intragranular deformation associated with
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‘the glide motion .of dislocations. Fig. 16'presents the’phvsical idea of

the Taylor model..Iﬁ a'qiven mechanlcal treatment on' the sample,: the shown
cryqtalllte 19 obllged to deform from (a) to (bl "From- the energetlcal
'.golnt ‘of view the deformatlon nas not only to consist of 51mple glldlng,-

but must be connccted w1th a rotation of crystal axes as well

: Taylor demonstrated that any qlven homo*eneous crystal deformatlon
could be represented by different superposition of no more than 5 contri
‘butions of glide- deformations and axes rotatlons, ‘and has introduced the
calculation of the work needed for all such superp051tlons; In hlS model
the dctual path of the crystallite is that, associated with the.miplmum
negessary work (Principle of Minimum Work). To predict the orientation
distribution in a deformed polycrystal the Tavlor method prescribes:the
analysis oh each crystallltc of the optlmum (mlnlmum work} superposition
of deformatlons and rotations driving the crvstalllte to the . same macros

copic deformatlon as the whele- sample.

Experimentally measured textures_of'metals are well near from those
calculated with the Taylor model. The theory has been further developed,
s0 permlttlnq the consideration of more compllcated ‘systems and other de'
formatlon mechanisus. Important works in this direction are those of
Bishop and Hill /41, 42/ on the mathematicil formulation of the problem
and of the yielding condition, the planning by Chin and Mammel /43/ of
the problem as a dual linear programmlng task and the simulation by Lis-
ter, Patterson and Hobbs /44/ of texture formation on. 1ow—symmetry systems

“(quartz rocks}.

'1igure’1a-‘ : Figure 1b

*gtereographlc pro;ectlon of the | ‘| pistribution density of (hkl)
. soints P and @ from the unit . lattice plane normals of all

~ sphere to P’ and Q' on the . crystallites in the stereogra
' equator plane. R o ' phic prOJection (pole fi gure)

34



r‘
=
©

&
K

Figure 2 ...

3

T

AN
\

Sy

Scheme Of a; “texture . gonlometer. | —— A — o0
1-primary beam.72 detector, ﬁ, ‘ g
¢, ¥ -rotation axes. , :

e

T
-

T
o
1
|
i
I
1
|

s

fFigﬁre 3

. Irreducible- ranges of inverse pole
. figures for cublc and hexagonal
clatt ces., -
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Figure 4 .. '--.

Representatlon of B gy
law in &6 —'i.--COOral :
nate system. The curves.. S .
correspond to reflectlons
from a bece lattice.
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FiFure 5

spectrometer. 1-neutron
source, 2-specimen with
texture goniometer,
3-slit collimator, 4-de
‘tector, L,,L,-first and
second flight path.

“T | Scheme of a TOF texture

oy

R

(hok,

Figure 6 -

Intensity relation of
"two overlapped Bragg
reflections (hkl) from
a texturized sample at
different specimen
positions. The angle
dispersive method
records the shaded
area., Using TOF tech-
nigue the curve can be
Separated in two sincle
peaks.

t,)

(h1k‘|l1) ) (hzkzlz). (hlk1l1)

Fiqure 7

Réprgsentation of specimen coordi-
nate system K with respect to the
crystal coordinate system K.
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Figure 8 }
Number of linearly independent
spherical harmonics 'in dependence
on series expansion deqree and
symmetry for even 1l only 1-axial,
2-cubic, 3-hexagonal, 3a-trigonal,
4-tetragonal, 5-orthorhombic,
6-monoclinic and 7-triclinic symme-
try.
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" ODF determined from pole
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TOF diffraction pattern from-a - -
rolled sheet of microduplex steel
for ND, RD and TD downward. I-inten
sity, N-number of time channel,

h
!
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Figure 11

TOF diffraction spectra from copper

for texture-free powder as well as

' for 96% deformed bars before and
~ fafter annealing (downward).

Figure 12

In#erse-pole figures of cbpper bars
for different annealing times at
-225°C. -

Figure 13

Intensity changes of Bragg reflec-
tions during recrystallization
nrocess, ;
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_ Figure 14

Pole fiqures of the quartz component in granulite.
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Fiqure 15

ODF of quartz'calculated from pole'figures of fig. 14.

‘Figure 16

Plastic deformation of a crystallite in
the Taylor model '

a} before deformation the sample and
crystal axes are parallel

b) to assimilate by gliding the

imposed macroscopic deformation,
the crystal axes are forced t
rotate as shown. -
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